158
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Docking and Antiepileptic Activity of New 2-((1,5-Diphenyl-1H-1,2,4-Triazol-3-yl)Thio)-N-Phenylacetamide Derivatives

ORCID Icon, , ORCID Icon, , &
Pages 6429-6443 | Received 08 Mar 2021, Accepted 14 Sep 2021, Published online: 29 Sep 2021

References

  • E. L. Johnson, “Seizures and Epilepsy,” The Medical Clinics of North America 103, no. 2 (2019): 309–24.
  • M. Levesque, and M. Avoli, “The Kainic Acid Model of Temporal Lobe Epilepsy,” Neuroscience and Biobehavioral Reviews 37, no. 10 Pt 2 (2013): 2887–99.
  • A. Singh, and S. Trevick, “The Epidemiology of Global Epilepsy,” Neurologic Clinics 34, no. 4 (2016): 837–47.
  • E. Bahramnjead, S. Kazemi Roodsari, N. Rahimi, P. Etemadi, I. Aghaei, and A. R. Dehpour, “Effects of Modafinil on Clonic Seizure Threshold Induced by Pentylenetetrazole in Mice: Involvement of Glutamate, Nitric Oxide, GABA, and Serotonin Pathways,” Neurochemical Research 43, no. 11 (2018): 2025–37.
  • R. A. Shellhaas, “Seizure Classification, Etiology, and Management,” Handbook of Clinical Neurology 162, (2019): 347–61.
  • M. Hassanzadeh, N. Sharifi, S. Mahernia, N. Rahimi, A. R. Dehpour, and M. Amanlou, “Effects of Onopordia, a Novel Isolated Compound from Onopordon Acanthium, on Pentylenetetrazole-Induced Seizures in Mice: Possible Involvement of Nitric Oxide Pathway,” Journal of Traditional and Complementary Medicine 11, no. 1 (2021): 22–6.
  • G. Zamanian, M. Shayan, N. Rahimi, T. Bahremand, H. Shafaroodi, S. Ejtemaei-Mehr, I. Aghaei, and A. R. Dehpour, “Interaction of Morphine Tolerance with Pentylenetetrazole-Induced Seizure Threshold in Mice: The Role of NMDA-Receptor/NO Pathway,” Epilepsy & Behavior: E&B 112, (2020): 107343.
  • F. Eslami, N. Rahimi, A. Ostovaneh, M. Ghasemi, P. Dejban, A. Abbasi, and A. R. Dehpour, “Sumatriptan Reduces Severity of Status Epilepticus Induced by Lithium–Pilocarpine through Nitrergic Transmission and 5‐HT1B/D Receptors in Rats: A Pharmacological‐Based Evidence,” Fundamental & Clinical Pharmacology 35, no. 1 (2021): 131–40.
  • W. Loscher, “Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs,” Neurochemical Research 42, no. 7 (2017): 1873–88.
  • O. Devinsky, A. Vezzani, T. J. O'Brien, N. Jette, I. E. Scheffer, M. de Curtis, and P. Perucca, “Epilepsy,” Nature Reviews. Disease Primers 4 (2018): 18024.
  • A. M. Bank, and C. W. Bazil, “Emergency Management of Epilepsy and Seizures,” Seminars in Neurology 39, no. 1 (2019): 73–81.
  • B. W. Abou-Khalil, “Antiepileptic Drugs,” Continuum (Minneap Minn) 22 (2016):132–56.
  • S. N. Mandhane, K. Aavula, and T. Rajamannar, “Timed Pentylenetetrazol Infusion Test: A Comparative Analysis with s.c.PTZ and MES Models of Anticonvulsant Screening in Mice,” Seizure 16, no. 7 (2007): 636–44.
  • S. Mahernia, N. Sharifi, M. Hassanzadeh, N. Rahimi, N. Pourshadi, A. Amanlou, A. R. Dehpour, and M. Amanlou, “Benzylidene Barbituric Acid Derivatives Shown Anticonvulsant Activity on Pentylenetetrazole-Induced Seizures in Mice: Involvement of Nitric Oxide Pathway,” Pharmaceutical Sciences 24, no. 4 (2018): 250–6.
  • N. Upmanyu, J. K. Gupta, K. Shah, and P. Mishra, “Anti-Inflammatory and Antinociceptive Evaluation of Newly Synthesized 4-(Substituted Ethanoyl) Amino-3-Mercapto-5-(4-Methoxy) Phenyl-1,2,4-Triazoles,” Journal of Pharmacy and Bioallied Sciences 3, no. 2 (2011): 259–65.
  • G. Turan-Zitouni, Z. A. Kaplancikli, K. Erol, and F. S. Kilic, “Synthesis and Analgesic Activity of Some Triazoles and Triazolothiadiazines,” Farmaco (Societa Chimica Italiana: 1989) 54, no. 4 (1999): 218–23.
  • A. Almasirad, S. A. Tabatabai, M. Faizi, A. Kebriaeezadeh, N. Mehrabi, A. Dalvandi, and A. Shafiee, “Synthesis and Anticonvulsant Activity of New 2-Substituted-5-[2-(2-Fluorophenoxy)Phenyl]-1,3,4-Oxadiazoles and 1,2,4-Triazoles,” Bioorganic & Medicinal Chemistry Letters 14, no. 24 (2004): 6057–9.
  • D. Kumudha, J. T. Leonard, M. Muthumani, N. Chidhambaranathan, and T. Kalavathi, “Synthesis and Evaluation of Some 1,2,4-Triazole Derivatives as Anticonvulsant, anti-Inflammatory and Antimicrobial Agents,” Asian Journal of Pharmaceutical and Clinical Research 6, no. 2 (2013): 5–8.
  • N. B. Saidov, I. M. Kadamov, V. A. Georgiyants, and A. V. Taran, “Planning, Synthesis, and Pharmacological Activity of Alkyl Derivatives of 3-Mercapto-4-Phenyl-5-Arylaminomethyl-1,2,4-Triazole-(4H),” Pharmaceutical Chemistry Journal 47, no. 11 (2014): 581–5.
  • N. Gulerman, S. Rollas, M. Kiraz, A. C. Ekinci, and A. Vidin, “Evaluation of Antimycobacterial and Anticonvulsant Activities of New 1-(4-Fluorobenzoyl)-4-Substituted-Thiosemicarbazide and 5-(4-Fluorophenyl)-4-Substituted-2,4-Dihydro-3H-1,2,4-Triazole-3-Thione Derivatives,” Farmaco (Societa Chimica Italiana: 1989) 52, no. 11 (1997): 691–5.
  • L. Richter, C. de Graaf, W. Sieghart, Z. Varagic, M. Mörzinger, I. J. P. de Esch, G. F. Ecker, and M. Ernst, “Diazepam-Bound GABAA Receptor Models Identify New Benzodiazepine Binding-Site Ligands,” Nature Chemical Biology 8, no. 5 (2012): 455–64.
  • A. Asadollahi, M. Asadi, F. S. Hosseini, Z. Ekhtiari, M. Biglar, and M. Amanlou, “Synthesis, Molecular Docking, and Antiepileptic Activity of Novel Phthalimide Derivatives Bearing Amino Acid Conjugated Anilines,” Research in Pharmaceutical Sciences 14, no. 6 (2019): 534–43.
  • P. K. Malaie, M. Asadi, F. S. Hosseini, M. Biglar, and M. Amanlou, “Synthesis, in Vivo and in Silico Studies of n-Aryl-4-(1,3-Dioxoisoindolin-2-yl)Benzamides as an Anticonvulsant Agent,” Pharmaceutical Sciences 26, no. 1 (2020): 38–44.
  • R. L. S. Tabatabaei, M. Asadi, F. S. Hosseini, A. Amanlou, M. Biglar, and M. Amanlou, “Synthesis and Evaluation of anti-Epileptic Properties of New Phthalimide-4,5-Dihydrothiazole-Amide Derivatives,” Polycyclic Aromatic Compounds (2020). doi: 10.1080/10406638.2020.1776345
  • S. Emami, A. Kebriaeezadeh, M. J. Zamani, and A. Shafiee, “Azolylchromans as a Novel Scaffold for Anticonvulsant Activity,” Bioorganic & Medicinal Chemistry Letters 16, no. 7 (2006): 1803–6.
  • F. Odame, E. C. Hosten, and Z. R. Tshentu, “Synthesis, Characterization, and Computational Studies of n-[(9e)-8,10,17-Triazatetracyclo[8.7.0.02,7.011,16]Heptadeca-1(17),2,4,6,11(16),12,14-Heptaen-9-Ylidene]Benzamide,” Journal of Structural Chemistry 61, no. 8 (2020): 1177–85.
  • M. C. F. C. B. Damião, R. Galaverna, A. P. Kozikowski, J. Eubanks, and J. C. Pastre, “Telescoped Continuous Flow Generation of a Library of Highly Substituted 3-Thio-1,2,4-Triazoles,” Reaction Chemistry & Engineering 2, no. 6 (2017): 896–907.
  • X. Li, X. Zhou, J. Zhang, L. Wang, L. Long, Z. Zheng, S. Li, and W. Zhong, “Synthesis and Biological Evaluation of Chromenylurea and Chromanylurea Derivatives as anti-TNF-α Agents That Target the p38 MAPK Pathway,” Molecules (Basel, Switzerland) 19, no. 2 (2014): 2004–28.
  • G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91.
  • Y. D. Gao, and J. F. Huang, “An Extension Strategy of Discovery Studio 2.0 for Non-Bonded Interaction Energy Automatic Calculation at the Residue Level,” Dongwuxue Yanjiu 32, no. 3 (2011): 262–6.
  • D. Seeliger, and B. L. de Groot, “Ligand Docking and Binding Site Analysis with PyMOL and Autodock/Vina,” Journal of Computer-Aided Molecular Design 24, no. 5 (2010): 417–22.
  • H. Amini-Khoei, N. Kordjazy, A. Haj-Mirzaian, S. Amiri, A. Haj-Mirzaian, A. Shirzadian, A. Hasanvand, S. Balali-Dehkordi, M. Hassanipour, A. R. Dehpour, et al. “Anticonvulsant Effect of Minocycline on Pentylenetetrazole-Induced Seizure in Mice: involvement of Nitric Oxide and N-Methyl-d-Aspartate Receptor,” Canadian Journal of Physiology and Pharmacology 96, no. 8 (2018): 742–50.
  • L. J. Quintans-Júnior, J. S. Siqueira, M. S. Melo, D. A. Silva, L. C. S. L. Morais, M. d. F. V. Souza, and R. N. Almeida, “Anticonvulsant Evaluation of Rauvolfia ligustrina Willd. ex Roem. & Schult., Apocynaceae, in Rodents,” Revista Brasileira de Farmacognosia 20, no. 1 (2010): 54–9.
  • H. Shafaroodi, S. Barati, M. Ghasemi, A. Almasirad, and L. Moezi, “A Role for ATP-Sensitive Potassium Channels in the Anticonvulsant Effects of Triamterene in Mice,” Epilepsy Research 121, (2016): 8–13.
  • H. Shafaroodi, F. Shahbek, M. Faizi, F. Ebrahimi, and L. Moezi, “Creatine Revealed Anticonvulsant Properties on Chemically and Electrically Induced Seizures in Mice,” Iranian Journal of Pharmaceutical Research: IJPR 15, no. 4 (2016): 843–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.