170
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Reusable ZnCr2O4 Nano Catalyzed One Pot Three-Component Cycloaddition Reaction for Synthesis of Azetidine Derivatives under Ultrasound Irradiation

, , ORCID Icon &
Pages 6398-6410 | Received 15 May 2021, Accepted 13 Sep 2021, Published online: 08 Oct 2021

References

  • P. Emel, and T. Zuhal, “Three-Component Aza-Diels–Alder Reactions Using Yb(OTf)3 Catalyst under Conventional/Ultrasonic Techniques,” Ultrasonic Sonochemistry 21, (2014): 1600–7. https://doi.org/10.1016/j.ultsonch.2014.01.009.
  • J. D. Sunderhaus, C. Dockendorff and S. F. Martin, “Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds,” Organic Letter 9, 21 (2007): 4223–4226. https://doi.org/10.1021/ol7018357.; (b) R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown and T.A. Keating, “Multiple-Component Condensation Strategies for Combinatorial Library Synthesis,” Accounts Chemical Research 29 (1996): 123–31. https://doi.org/10.1021/ar9502083.
  • (a) A. Domling, W. Wang and K. Wang, “Chemistry and Biology Of Multicomponent Reactions,” Chemical Reviews 112 (2012): 3083–35. https://doi.org/10.1021/cr100233r.; (b) B. H. Rotstein, S. Zaretsky, V. Rai and A. K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114 (2014): 8323–59. https://doi.org/10.1021/cr400615v.
  • S. T. Nguyen, J. D. Williams, M. M. Butler, X. Ding, D. M. Mills, T. F. Tashjian, R. G. Panchal, S. K. Weir, C. Moon, H.-O. Kim, et al. “Synthesis and Antibacterial Evaluation of New, Unsymmetrical Triaryl Bisamidine Compounds,” Bioorganic & Medicinal Chemistry Letters 24, no. 15 (2014): 3366–72. https://doi.org/10.1016/j.bmcl.2014.05.094.
  • R. B. Patel, P. S. Desai, K. R. Desai, and K. H. Chikhalia, “Synthesis of Pyrimidine Based Thiazolidinones and Azetidinones: Antimicrobial and Antitubercular Agents,” Indian Journal of Chemistry 45B (2006): 773–8. http://hdl.handle.net/123456789/6394.
  • S. K. Srivastava, R. Dua, and S. D. Srivastava, “Synthesis and Antimicrobial Activity of [N1-(N-Substitutedarylidene-Hydrazino)-Acetyl]-2-Methyl-Imidazoles and [N1-(4-Substituted Aryl-3-Chloro-2-Oxo-1- Azetidinyl-Amino)-Acetyl]-2-Methyl-Imidazoles,” Proceedings of the National Academy of Sciences, India Section A Physical Science 80 (2010): 117–21.
  • P. B. Trivedi, N. K. Undavia, A. M. Dave, K. N. Bhatt, and N. C. Desai, “Synthesis and Antimicrobial Activity of 4-Oxothiazolidines, 4-Oxoazetidines, Malonanilic Acid Hydrazines and Pyrazoline Derivatives of Phenothiazine,” Indian Journal of Chemistry 32B, no. 7 (1993): 760–5.
  • H. Panwar, R. S. Verma, V. K. Srivastava, and A. Kumar, “Synthesis of Some Substituted Azetidinonyl and Thiazolidinonyl-1,3,4-Thiadiazino[6,5-b]Indoles as Prospective Antimicrobial Agents,” Indian Journal of Chemistry 45B (2006): 2099–104.
  • N. Siddiqui, A. Rana, S. A. Khan, S. E. Haque, M. S. Alam, W. Ahsan, and M. F. Arshada, “Anticonvulsant and Toxicity Evaluation of Newly Synthesized 1-2-(3,4-Disubstitutedphenyl)-3-Chloro-4-Oxoazetidin-1-yl-3-(6-Substituted-1,3-Benzothiazol-2-yl)Ureas,” Acta Chimica Slovenia 56 (2009): 462–9.
  • T. Akihisa, S. Mafune, M. Ukiya, Y. Kimura, K. Yasukawa, T. Suzuki, H. Tokuda, N. Tanabe, and T. Fukuoka, “(+)- and (-)-Syn-2-Isobutyl-4-Methylazetidine-2,4-Dicarboxylic Acids from the Extract of Monascus pilosus-Fermented Rice (Red-Mold Rice) “(+)-),” Journal of Natural Products 67, no. 3 (2004): 479–80. https://doi.org/10.1021/np030394i.
  • F. Couty, and E. Gwilherm, “Azetidines: New Tools for the Synthesis of Nitrogen Heterocycles,” Synlett 2009, no. 19 (2009): 3053–64. https://doi.org/10.1055/s-0029-1218299
  • G. Sundararajan, N. Prabagaran, and B. Varghese, “First Asymmetric Synthesis of Quinoline Derivatives by Inverse Electron Demand (IED) Diels-Alder Reaction Using Chiral Ti(IV) Complex ,” Organic Letters 3, no. 13 (2001): 1973–6. https://doi.org/10.1021/ol0159221.
  • J. Zhang, and C. Li, “InCl(3)-Catalyzed Domino Reaction of Aromatic Amines with Cyclic Enol Ethers in Water: A Highly Efficient Synthesis of New 1,2,3,4-Tetrahydroquinoline Derivatives,” The Journal of Organic Chemistry 67, no. 11 (2002): 3969–71. https://doi.org/10.1021/jo020131d.
  • C. R. Borel, L. C. A. Barbosa, C. R. Á. Maltha, and S. A. Fernandes, “A Facile One-Pot Synthesis of 2-(2-Pyridyl) Quinolines via Povarov Reaction,” Tetrahedron Letters 56, no. 5 (2015): 662–5. https://doi.org/10.1016/j.tetlet.2014.12.016.
  • M. S. Sokamisa, Y. M. Nyondlo, and H. H. Kinfe, “Aluminum Triflate Catalyzed Povarov Reaction for the Synthesis of Pyranotetrahydroquinolines,” Arkivoc 2016, no. 3 (2016): 313–24. https://doi.org/10.3998/ark.5550190.p009.447.
  • G. Bergonzini, L. Gramigna, A. Mazzanti, M. Fochi, L. Bernardi, and A. Ricci, “Organocatalytic Asymmetric Povarov Reactions with 2- and 3-Vinylindoles,” Chemical Communications (Cambridge, England) 46, no. 2 (2010): 327–9. https://doi.org/10.1039/B921113F.
  • H. Liu, G. Dagousset, G. Masson, P. Retailleau, and Jieping. Zhu, “Chiral Brønsted Acid-Catalyzed Enantioselective Three-Component Povarov Reaction,” Journal of the American Chemical Society 131, no. 13 (2009): 4598–9. https://doi.org/10.1021/ja900806q.
  • P. Chavan, S. Bangale, D. Pansare, R. Shelke, S. Jadhav, S. Tupare, D. Kamble, and M. Rai, “Synthesis of Substituted Pyrimidine Using ZnFe2O4 Nano Catalyst via One Pot Multi-Component Reaction Ultrasonic Irradiation,” Journal of Heterocyclic Chemistry (2020): 1–8. https://doi.org/10.1002/jhet.4048.
  • S. Jadhav, M. Farooqui, P. Chavan, S. Hussain and M. Rai, “ZnFe2O4 Nano-Catalyzed One-Pot Multi-Component Synthesis of Substituted Tetrahydropyranoquinoline under Neat Ultrasonic Irradiation,” Polycyclic Aromatic Compounds (2020): 1–9. https://doi.org/10.1080/10406638.2020.1825005.
  • R. F. Service, “Nanocrystals May Give Boost to Data Storage,” Science 287, no. 5460 (2000): 1902–3. https://doi.org/10.1126/science.287.5460.1902.
  • D. H. Chen, and M. H. Liao, “Preparation and Characterization of YADH-Bound Magnetic Nanoparticles,” Journal of Molecular Catalysis B: Enzymatic 16, no. 5–6 (2002): 283–91. https://doi.org/10.1016/S1381-1177(01)00074-1.
  • M. Kishimoto, Y. Sakurai, and T. Ajima, “Magneto‐Optical Properties of Ba‐Ferrite Particulate Media,” Journal of Applied Physics 76, no. 11 (1994): 7506–9. https://doi.org/10.1063/1.357981.
  • M. H. Sousa, E. Hasmonay, J. Depeyrot, F. A. Tourinho, J.-C. Bacri, E. Dubois, R. Perzynski, and Y. L. Raikher, “NiFe2O4 Nanoparticles in Ferrofluids: Evidence of Spin Disorder in the Surface Layer,” Journal of Magnetism and Magnetic Materials 242–245 (2002): 572–4. https://doi.org/10.1016/S0304-8853(01)01122-2.
  • S. V. Bangale, D. R. Patil, and S. R. Bamane, “Nanostructured Spinel ZnFe2O4 for the Detection of Chlorine Gas,” Sensors & Transducers Journal 11, no. 134 (2011): 107–19.
  • V. Sepelak, K. Baabe, K. Mienert, K. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, “Evolution of Structure and Magnetic Properties with Annealing Temperature in Nanoscale High-Energy-Milled Nickel Ferrite,” Journal of Magnetism and Magnetic Materials 257, no. 2–3 (2003): 377–86. https://doi.org/10.1016/S0304-8853(02)01279-9.
  • P. Chavan, S. Jadhav, and M. Rai, “Synthesis of Tetrahydroquinoline Derivatives via One Pot Multi-Component (4 + 2) Cycloaddition (Povarov) Reaction,” Asian Journal of Research in Chemistry 11, no. 1 (2018): 111–20. https://doi.org/10.5958/0974-4150.2018.00024.X.
  • M. Vinatoru, E. Bartha, F. Badea, and J. L. Luche, “Sonochemical and Thermal Redox Reactions of Triphenylmethane and Triphenylmethyl Carbinol in Nitrobenzene,” Ultrasonics Sonochemistry 5, no. 1 (1998): 27–31. https://doi.org/10.1016/S1350-4177(98)00004-2.
  • M. Meciarova, S. Toma, and J. L. Luche, “The Sonochemical Arylation of Malonic Esters Mediated by Manganese Triacetate,” Ultrasonics Sonochemistry 8, no. 2 (2001): 119–22. https://doi.org/10.1016/S1350-4177(00)00029-8.
  • N. Cabello, P. Cintas, and J. -L. Luche, “Sonochemical Effects in the Additions of Furan to Masked Ortho-Benzoquinones,” Ultrasonics Sonochemistry 10, no. 1 (2003): 25–31. https://doi.org/10.1016/S1350-4177(02)00103-7.
  • Rodrigo. Cella, and A. Helio, “Ultrasound in Heterocycles Chemistry,” Tetrahedron 65, no. 13 (2009): 2619–41. https://doi.org/10.1016/j.tet.2008.12.027.
  • A. Maleki, M. Aghaei, and T. Kari, “Facile Synthesis of 7-Aryl-Benzo[h]Tetrazolo[5,1-b]Quinazoline-5,6-Dione Fused Polycyclic Compounds by Using a Novel Magnetic Polyurethane Catalyst,” Polycyclic Aromatic Compounds 39, no. 3 (2019): 266–78.
  • A. Maleki, “An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles,” Polycyclic Aromatic Compounds 38, no. 5 (2018): 402–9.
  • A. Maleki, R. Taheri-Ledari, J. Rahimi, M. Soroushnejad, and Z. Hajizadeh, “Facile Peptide Bond Formation: Effective Interplay between Isothiazolone Rings and Silanol Groups at Silver/Iron Oxide Nanocomposite Surfaces,” ACS Omega 4, no. 6 (2019): 10629–39.
  • A. Maleki, “Green Oxidation Protocol: Selective Conversions of Alcohols and Alkenes to Aldehydes, Ketones and Epoxides by Using a New Multiwall Carbon Nanotube-Based Hybrid Nanocatalyst via Ultrasound Irradiation,” Ultrasonics Sonochemistry 40 (2018): 460–4.
  • A. Maleki, M. Aghaei, H. R. Hafizi-Atabak, and M. Ferdowsi, “Ultrasonic Treatment of CoFe2O4@B2O3-SiO2 as a New Hybrid Magnetic Composite Nanostructure and Catalytic Application in the Synthesis of Dihydroquinazolinones,” Ultrasonics Sonochemistry 37, (2017): 260–6.
  • A. Maleki, and M. Aghaei, “Sonochemical Rate Enhanced by a New Nanomagnetic Embedded Core/Shell Nanoparticles and Catalytic Performance in the Multicomponent Synthesis of Pyridoimidazoisoquinolines,” Ultrasonics Sonochemistry 38, (2017): 115–19.
  • A. Maleki, and M. Aghaei, “Ultrasonic Assisted Synergetic Green Synthesis of Polycyclic Imidazo(Thiazolo)Pyrimidines by Using Fe3O4@Clay Core-Shell,” Ultrasonics Sonochemistry 38, (2017): 585–9.
  • A. Maleki, and M. Aghaie, “Ultrasonic-Assisted Environmentally-Friendly Synergetic Synthesis of Nitroaromatic Compounds in Core/Shell Nanoreactor: A Green Protocol,” Ultrasonics Sonochemistry 39, (2017): 534–9.
  • A. Maleki, J. Rahimi, O. M. Demchuk, A. Z. Wilczewska, and R. Jasiński, “Green in Water Sonochemical Synthesis of Tetrazolopyrimidine Derivatives by a Novel Core-Shell Magnetic Nanostructure Catalyst,” Ultrasonics Sonochemistry 43, (2018): 262–71.
  • A. Maleki, “One-Pot Three-Component Synthesis of Pyrido[2′,1′:2,3]Imidazo[4,5-c]Isoquinolines Using Fe3O4@SiO2–OSO3H as an Efficient Heterogeneous Nanocatalyst,” RSC Advances 4, no. 109 (2014): 64169–73.
  • A. Maleki, “One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles. Tetrahedron Lett., 2013, 54, 2055–2059,” Tetrahedron Letters 54, no. 16 (2013): 2055–9.
  • A. Maleki, “Fe3O4SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines,” Tetrahedron 68, no. 38 (2012): 7827–33.
  • A. Shaabani, A. Maleki, J. M. Rad, and E. Soleimani, “Cellulose Sulfuric Acid Catalyzed One-Pot Three-Component Synthesis of Imidazoazines,” Chemical & Pharmaceutical Bulletin 55, no. 6 (2007): 957–8.
  • A. Maleki, “Synthesis of Imidazo[1,2-a]Pyridines Using Fe3O4@SiO2 as an Efficient Nanomagnetic Catalyst via a One-Pot Multicomponent Reaction,” Helvetica Chimica Acta 97, no. 4 (2014): 587–93.
  • A. Shaabani, E. Soleimani, A. Maleki, and J. Moghimi‐Rad, “Rapid Synthesis of 3‐Aminoimidazo[1,2‐a]Pyridines and Pyrazines,” Synthetic Communications 38, no. 7 (2008): 1090–5.
  • A. Shaabani, E. Soleimani, and A. Maleki, “One-Pot Three-Component Synthesis of 3-Aminoimidazo[1,2-a]Pyridines and -Pyrazines in the Presence of Silica Sulfuric Acid,” Monatshefte Für Chemie - Chemical Monthly 138, no. 1 (2007): 73–6.
  • A. Shaabani, E. Soleimani, and A. Maleki, “Ionic Liquid Promoted One-Pot Synthesis of 3-Aminoimidazo[1,2-a]Pyridines,” Tetrahedron Letters 47, no. 18 (2006): 3031–4.
  • S. V. Bangale, and S. R. Bamane, “Preparation and Electrical Properties of Nanostructured Spinel ZnCr2O4 by Combustion Route,” Journal of Materials Science: Materials in Electronics 1, no. 24 (2013): 277–81. https://doi.org/10.1007/s10854-012-0739-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.