125
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dioxovanadium(V) Complex Incorporating Tridentate ONO Donor Aminobenzohydrazone Ligand: Synthesis, Spectral Characterization and Application as a Homogeneous Lewis Acid Catalyst in the Friedländer Synthesis of Substituted Quinolines

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6485-6500 | Received 23 May 2021, Accepted 16 Sep 2021, Published online: 06 Oct 2021

References

  • J. N. Borase, R. G. Mahale, S. S. Rajput, and D. S. Shirsath, “Design, Synthesis and Biological Evaluation of Heterocyclic Methyl Substituted Pyridine Schiff Base Transition Metal Complexes,” SN Applied Sciences 3, no. 2 (2021).
  • K. S. Munawar, S. M. Haroon, S. A. Hussain, and H. Raza, “Schiff Bases: Multipurpose Pharmacophores with Extensive Biological Applications,” Journal of Basic & Applied Sciences 14 (2018): 217–29.
  • S. A. Zabin, and M. Abdelbaset, “Oxo/Dioxo-Vanadium(V) Complexes with Schiff Base Ligands Derived from 4-Amino-5-Mercapto-3-Phenyl-1,2,4-Triazole,” European Journal of Chemistry 7, no. 3 (2016): 322–8.
  • S. A. Majid, J. M. Mir, S. Paul, M. Akhter, H. Parray, R. Ayoub, and A. H. Shalla, “Experimental and Molecular Topology-Based Biological Implications of Schiff Base Complexes: A Concise Review,” Reviews in Inorganic Chemistry 39, no. 2 (2019): 113–28.
  • M. B. A. Afonso, T. R. Cruz, Y. F. Silva, J. C. A. Pereira, A. E. H. Machado, B. E. Goi, B. S. Lima-Neto, and V. P. Carvalho, Jr., “Ruthenium(II) Complexes of Schiff Base Derived from Cycloalkylamines as Pre-Catalysts for ROMP of Norbornene and ATRP of Methyl Methacrylate,” Journal of Organometallic Chemistry 851 (2017): 225–34.
  • H. Kargar, “Synthesis, Characterization and Crystal Structure of a Manganese (III) Schiff Base Complex and Investigation of Its Catalytic Activity in the Oxidation of Benzylic Alcohols,” Transition Metal Chemistry 39, no. 7 (2014): 811–7.
  • N. Sudhapriya, A. Nandakumar, and P. P. Thirumalai, “Facile Synthesis of 2-Substituted Quinolines and 3-Alkynyl-2-Aryl-2H-Indazole via SnCl2-Mediated Reductive Cyclization,” RSC Advances 4, no. 102 (2014): 58476–80.
  • F. Tufail, M. Saquib, S. Singh, J. Tiwari, M. Singh, J. Singh, and J. Singh, “Bioorganopromoted Green Friedländer Synthesis: A Versatile New Malic Acid Promoted Solvent Free Approach to Multisubstituted Quinolines,” New Journal of Chemistry 41, no. 4 (2017): 1618–24.
  • Sumesh Eswaran, Airody Vasudeva Adhikari, Imran H. Chowdhury, Nishith K. Pal, and K. D. Thomas, “New Quinoline Derivatives: Synthesis and Investigation of Antibacterial and Antituberculosis Properties,” European Journal of Medicinal Chemistry 45, no. 8 (2010): 3374–83.
  • A. Marella, O. P. Tanwar, R. Saha, M. R. Ali, S. Srivastava, M. Akhter, M. Shaquiquzzaman, and M. M. Alam, “Quinoline: A Versatile Heterocyclic,” Saudi Pharmaceutical Journal: SPJ : The Official Publication of the Saudi Pharmaceutical Society 21, no. 1 (2013): 1–12.
  • J. K. Augustine, A. Bombrun, and S. Venkatachaliah, “An Efficient Catalytic Method for the Friedländer Annulation Mediated by Peptide Coupling Agent Propylphosphonic Anhydride,” Tetrahedron Letters 52, no. 50 (2011): 6814–8.
  • G. D. Yadav, R. P. Kumbhar, and S. Helder, “A Facile Solvent-Free Skraup Cyclization Reaction for Synthesis of 2,2,4-Trimethyl-1,2-Dihydroquinoline,” International Review of Chemical Engineering 4 (2012): 597–607.
  • N. D. Heindel, T. A. Brodof, and J. E. Kogelschatz, “Cyclization of Amine–Acetylene Diester Adducts: A Modification of the Conrad-Limpach Method,” Journal of Heterocyclic Chemistry 3, no. 2 (1966): 222–3.
  • W. Pfitzinger, “Chinolinderivate Aus Isatinsäure,” Journal Für Praktische Chemie 33, no. 1 (1886): 100–1.
  • E. A. Fehnel, “Friedländer Syntheses with o-Aminoaryl Ketones. I. Acid-Catalyzed Condensations of o-Aminobenzophenone with Ketones,” The Journal of Organic Chemistry 31, no. 9 (1966): 2899–902.
  • E. Roberts and E. E. Turner, “The Factors Controlling the Formation of Some Derivatives of Quinoline, and a New Aspect of the Problem of Substitution in the Quinoline Series,” Journal of the Chemical Society 0, no. 0 (1927): 1832–57.
  • J. S. Yadav, P. P. Rao, D. Sreenu, R. S. Rao, V. N. Kumar, K. Nagaiah, and A. R. Prasad, “Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedländer Quinoline Synthesis,” Tetrahedron Letters 46, no. 42 (2005): 7249–53.
  • M. Fallah-Mehrjardi, “Friedländer Synthesis of Poly-Substituted Quinolines: A Mini Review,” Mini-Reviews in Organic Chemistry 14, no. 3 (2017): 187–96.
  • A. Arcadi, M. Chiarini, S. D. Giuseppe, and F. Marinelli, “A New Green Approach to the Friedländer Synthesis of Quinolines,” Synlett 2003, no. 2 (2003): 0203–6.
  • J. Marco-Contelles, E. Perez-Mayoral, A. Samadi, M. C. Carreiras, and E. Soriano, “Recent Advances in the Friedländer Reaction,” Chemical Reviews 109, no. 6 (2009): 2652–72.
  • Yi-Zhen Hu, Gang Zhang, and Randolph P. Thummel, “Friedländer Approach for the Incorporation of 6-Bromoquinoline into Novel Chelating Ligands,” Organic Letters 5, no. 13 (2003): 2251–3.
  • X. S. Wang, M. M. Zhang, H. Jiang, D. Q. Shi, and S. J. Tu, “A Clean Synthesis of 1,4-Diarylquinoline Derivatives Catalyzed by TEBAC in Aqueous Media,” Journal of the Chinese Chemical Society 54, no. 4 (2007): 1033–9.
  • F. W. Wu, R. S. Hou, H. M. Wang, I. J. Kang, and L. C. Chen, “Catalyst Free Indirect Friedländer Synthesis of Substituted Quinolines from Alcohols in PEG-400,” Journal of the Chinese Chemical Society 59, no. 4 (2012): 535–9.
  • S. Gladiali, G. Chelucci, M. S. Mudadu, M. A. Gastaut, and R. P. Thummel, “Friedländer Synthesis of Chiral Alkyl-Substituted 1,10-Phenanthrolines,” The Journal of Organic Chemistry 66, no. 2 (2001): 400–5.
  • C. S. Cho, W. X. Ren, and S. C. Shim, “A Copper(II)-Catalyzed Protocol for Modified Friedländer Quinoline Synthesis,” Tetrahedron Letters 47, no. 38 (2006): 6781–5.
  • K. Taguchi, S. Sakaguchi, and Y. Ishii, “Synthesis of Quinolines from Amino Alcohol and Ketones Catalyzed by [IrCl(Cod)]2 or IrCl3 under Solvent-Free Conditions,” Tetrahedron Letters 46, no. 27 (2005): 4539–42.
  • H. Kargar, M. Bazrafshan, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H. Amiri Rudbari, K. S. Munawar, M. Ashfaq, and M. N. Tahir, “Synthesis, Characterization, Crystal Structures, Hirshfeld Surface Analysis, DFT Computational Studies and Catalytic Activity of Novel Oxovanadium and Dioxomolybdenum Complexes with ONO Tridentate Schiff Base Ligand,” Polyhedron 202 (2021): 115194.
  • K. S. Munawar, S. Ali, M. N. Tahir, N. Khalid, Q. Abbas, I. Z. Qureshi, S. Hussain, and M. Ashfaq, “Synthesis, Spectroscopic Characterization, X-Ray Crystal Structure, Antimicrobial, DNA-Binding, Alkaline Phosphatase and Insulin-Mimetic Studies of Oxidovanadium(IV) Complexes of Azomethine Precursors,” Journal of Coordination Chemistry 73, no. 16 (2020): 2275–300.
  • H. Kargar, P. Forootan, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H. Amiri Rudbari, K. S. Munawar, M. Ashfaq, and M. N. Tahir, “Novel Oxovanadium and Dioxomolybdenum Complexes of Tridentate ONO-Donor Schiff Base Ligand: Synthesis, Characterization, Crystal Structures, Hirshfeld Surface Analysis, DFT Computational Studies and Catalytic Activity for the Selective Oxidation of Benzylic Alcohols,” Inorganica Chimica Acta 523 (2021): 120414.
  • H. Kargar, A. Kaka-Naeini, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H. Amiri Rudbari, and K. S. Munawar, “Oxovanadium and Dioxomolybdenum Complexes: Synthesis, Crystal Structure, Spectroscopic Characterization and Applications as Homogeneous Catalysts in Sulfoxidation,” Journal of Coordination Chemistry 74, no. 9–10 (2021): 1563–83.
  • M. R. Maurya, “Probing the Synthetic Protocols and Coordination Chemistry of Oxido-, Dioxido-, Oxidoperoxido-Vanadium and Related Complexes of Higher Nuclearity,” Coordination Chemistry Reviews 383 (2019): 43–81.
  • M. M. Javadi, M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H. Kargar, and M. N. Tahir, “Oxidation of Alkenes and Sulfides Catalyzed by a New Binuclear Molybdenum Bis-Oxazoline Complex,” Polyhedron 72 (2014): 19–26.
  • A. Sahraei, H. Kargar, M. Hakimi, and M. N. Tahir, “Distorted Square-Antiprism Geometry of New Zirconium (IV) Schiff Base Complexes: Synthesis, Spectral Characterization, Crystal Structure and Investigation of Biological Properties,” Journal of Molecular Structure 1149 (2017): 576–84.
  • H. Kargar, V. Torabi, A. Akbari, R. Behjatmanesh-Ardakani, and M. N. Tahir, “Synthesis, Characterization, Crystal Structure and DFT Studies of a Palladium(II) Complex with an Asymmetric Schiff Base Ligand,” Journal of Molecular Structure 1179 (2019): 732–8.
  • H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, M. Kashani, Z. Chavoshpour-Natanzi, Z. Kazemi, V. Mirkhani, A. Sahraei, M. N. Tahir, M. Ashfaq, et al. “Synthesis, Characterization, Crystal Structures, DFT, TD-DFT, Molecular Docking and DNA Binding Studies of Novel Copper(II) and Zinc(II) Complexes Bearing Halogenated Bidentate N,O-Donor Schiff Base Ligands,” Polyhedron 195 (2021): 114988.
  • H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, A. Sarvian, Z. Kazemi, Z. Chavoshpour-Natanzi, V. Mirkhani, A. Sahraei, M. N. Tahir, and M. Ashfaq, “Novel Copper(II) and Zinc(II) Complexes of Halogenated Bidentate N,O-Donor Schiff Base Ligands: Synthesis, Characterization, Crystal Structures, DNA Binding, Molecular Docking, DFT and TD-DFT Computational Studies,” Inorganica Chimica Acta 514 (2021): 120004.
  • A. K. Singh, O. P. Pandey, and S. K. Sengupta, “Synthesis, Spectral Characterization and Biological Activity of Zinc(II) Complexes with 3-Substituted Phenyl-4-Amino-5-Hydrazino-1,2,4-Triazole Schiff Bases,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 85 (2012): 1–6.
  • S. Durmus, A. Atahan, and M. Zengin, “Synthesis, Characterization and Electrochemical Behavior of Some Ni(II), Cu(II), Co(II) and Cd(II) Complexes of ONS Type Tridentate Schiff Base Ligand,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 84, no. 1 (2011): 1–5.
  • Ali Hossein Kianfar, Wan Ahmad Kamil Mahmood, Mohammad Dinari, Mohammad Hossein Azarian, and Fatemeh Zare Khafri, “Novel Nanohybrids of Cobalt(III) Schiff Base Complexes and Clay: Synthesis and Structural Determinations,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 127 (2014): 422–8.
  • M. Shebl, “Synthesis and Spectroscopic Studies of Binuclear Metal Complexes of a Tetradentate N2O2 Schiff Base Ligand Derived from 4,6-Diacetylresorcinol and Benzylamine,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 70, no. 4 (2008): 850–9.
  • M. Fernández, L. Becco, I. Correia, J. Benítez, O. E. Piro, G. A. Echeverria, A. Medeiros, M. Comini, M. L. Lavaggi, M. González, et al. “Oxidovanadium(IV) and Dioxidovanadium(V) Complexes of Tridentate Salicylaldehyde Semicarbazones: Searching for Prospective Antitrypanosomal Agents,” Journal of Inorganic Biochemistry 127 (2013): 150–60.
  • M. R. Maurya, B. Uprety, F. Avecilla, P. Adao, and J. C. Pessoa, “Vanadium(v) Complexes of a Tripodal Ligand, Their Characterisation and Biological Implications,” Dalton Transactions (Cambridge, England : 2003) 44, no. 40 (2015): 17736–55.
  • X. Wang, X. M. Zhang, and H. X. Liu, “Synthesis, Characterization and Crystal Structures of Two Cis-Dioxo Vanadium(V) complexes of Monoanionic Tridentate Schiff Base Ligands,” Inorganica Chimica Acta 223 (1994): 193–7.
  • Danijela Cvijanović, Jana Pisk, Gordana Pavlović, Dubravka Šišak-Jung, Dubravka Matković-Čalogović, Marina Cindrić, Dominique Agustin, and Višnja Vrdoljak, “Discrete Mononuclear and Dinuclear Compounds Containing a MoO22+ Core and 4-Aminobenzhydrazone Ligands: Synthesis, Structure and Organic-Solvent-Free Epoxidation Activity,” New Journal of Chemistry 43, no. 4 (2019): 1791–802.
  • R. Kia and H. Kargar, “Synthesis, Spectral Characterization and Crystal Structure Studies of a New Hydrazone Schiff Base and Its Dioxomolybdenum(VI) Complex,” Journal of Coordination Chemistry 68, no. 8 (2015): 1441–51.
  • N. K. Ngan, K. M. Lo, and C. S. R. Wong, “Synthesis, Structure Studies and Electrochemistry of Molybdenum(VI) Schiff Base Complexes in the Presence of Different Donor Solvent Molecules,” Polyhedron 30, no. 17 (2011): 2922–32.
  • M. R. Maurya, S. Khurana, W. Zhang, and D. Rehder, “Biomimetic Oxo-, Dioxo- and Oxo-Peroxo-Hydrazonato-Vanadium(IV/V) Complexes,” Journal of the Chemical Society, Dalton Transactions 2002, no. 15 (2002): 3015–23.
  • S. Mahato, N. Meheta, M. Kotakonda, M. Joshi, M. Shit, A. R. Choudhury, and B. Biswas, “Synthesis, Structure, Polyphenol Oxidase Mimicking and Bactericidal Activity of a Zinc-Schiff Base Complex,” Polyhedron 194 (2021): 114933.
  • C. K. Pal, S. Mahato, M. Joshi, S. Paul, A. R. Choudhury, and B. Biswas, “Transesterification Activity by a Zinc(II)-Schiff Base Complex with Theoretical Interpretation,” Inorganica Chimica Acta 506 (2020): 119541.
  • S. K. Sen, A. Al Mortuza, M. S. Manir, M. F. Pervez, S. M. A. I. Hossain, M. S. Alam, M. A. S. Haque, M. A. Matin, M. A. Hakim, and A. Huda, “Structural and Optical Properties of Sol–Gel Synthesized h-MoO3 Nanorods Treated by Gamma Radiation,” Nano Express 1 (2020): 020026.
  • V. Mirkhani, I. Mohammadpoor-Baltork, M. Moghadam, S. Tangestaninejad, M. Abdollahi-Alibeik, and H. Kargar, “ZrOCl2·8H2O: An Efficient and Reusable Catalyst for the Synthesis of Imidazolines and Bis-Imidazolines under Various Reaction Conditions,” Applied Catalaysis A: General 325 (2007): 99–104.
  • I. Mohammadpoor-Baltork, V. Mirkhani, M. Moghadam, S. Tangestaninejad, M. A. Zolfigol, M. Abdollahi-Alibeik, A. R. Khosropour, H. Kargar, and S. F. Hojati, “Silica Sulfuric Acid: A Versatile and Reusable Heterogeneous Catalyst for the Synthesis of Oxazolines and Imidazolines Under Various Reaction Conditions,” Catalysis Communications 9 (2008): 894–901.
  • M. Moghadam, V. Mirkhani, S. Tangestaninejad, I. Mohammadpoor-Baltork, and H. Kargar, “InCl3 as an Efficient Catalyst for Synthesis of Oxazolines under Thermal, Ultrasonic and Microwave Irradiations,” Journal of the Iranian Chemical Society 6 (2009): 251.
  • F. Najafi and M. Fallah-Mehrjardi, “Synthesis of Fe3O4 Nanoparticles Bound with Polyethylene Glycol Substituted 1-Methyl Imidazolium Bromide and Their Application as Nanomagnetic and Recyclable Phase-Transfer Catalysts for the Green and Efficient Synthesis of 4H-Pyrans,” Letters in Organic Chemistry 15 (2018): 778–86.
  • H. Talaei, M. Fallah-Mehrjardi, and F. Hakimi, “Polyethylene Glycol-(N-Methylimidazolium) Hydroxide-Grafted γ-Fe2O3@HAp: A Novel Nanomagnetic Recyclable Basic Phase-Transfer Catalyst for the Synthesis of Tetrahydrobenzopyran Derivatives in Aqueous Media,” Journal of the Chinese Chemical Society 65 (2018): 523–30.
  • M. Fallah-Mehrjardi and S. Kalantari, “A Brønsted Acid Ionic Liquid Immobilized on Fe3O4@SiO2 Nanoparticles as an Efficient and Reusable Solid Acid Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Russian Journal of Organic Chemistry 56 (2020): 298–306.
  • A. R. Kiasat, A. Mouradzadegun, and S. J. Saghanezhad, “Poly(4-Vinylpyridinium Butane Sulfonic Acid) Hydrogen Sulfate: An Efficient, Heterogeneous Poly(Ionic Liquid), Solid Acid Catalyst for the One-Pot Preparation of 1-Amidoalkyl-2-Naphthols and Substituted Quinolines under Solvent-Free Conditions,” Chinese Journal of Catalysis 34 (2013): 1861–8.
  • M. Narasimhulu, T. S. Reddy, K. C. Mahesh, P. Prabhakar, C. B. Rao, and Y. Venkateswarlu, “Silica Supported Perchloric Acid: A Mild and Highly Efficient Heterogeneous Catalyst for the Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation,” Journal of Molecular Catalysis A: Chemical 266 (2007): 114–7.
  • G. C. Muscia, M. Bollini, J. P. Carnevale, A. M. Bruno, and S. E. Asís, “Microwave-Assisted Friedländer Synthesis of Quinolines Derivatives as Potential Antiparasitic Agents,” Tetrahedron Letters 47 (2006): 8811–5.
  • S. K. De and R. A. Gibbs, “A Mild and Efficient One-Step Synthesis of Quinolines,” Tetrahedron Letters 46 (2005): 1647–9.
  • D. S. Bose and R. K. Kumar, “An Efficient, High Yielding Protocol for the Synthesis of Functionalized Quinolines via the Tandem Addition/Annulation Reaction of o-Aminoaryl Ketones with α-Methylene Ketones,” Tetrahedron Letters 47 (2006): 813–6.
  • B. Das, K. Damodar, N. Chowdhury, and R. A. Kumar, “Application of Heterogeneous Solid Acid Catalysts for Friedländer Synthesis of Quinolines,” Journal of Molecular Catalysis A: Chemical 274 (2007): 148–52.
  • A. Shaabani, A. Rahmati, and Z. Badri, “Sulfonated Cellulose and Starch: New Biodegradable and Renewable Solid Acid Catalysts for Efficient Synthesis of Quinolines,” Catalysis Communications 9 (2008): 13–6.
  • M. Dabiri and S. Bashiribod, “Phosphotungstic Acid: An Efficient, Cost-Effective and Recyclable Catalyst for the Synthesis of Polysubstituted Quinolines,” Molecules (Basel, Switzerland) 14 (2009): 1126–33.
  • S. Sadjadi, S. Shiri, R. Hekmatshoar, and Y. S. Beheshtiha, “Nanocrystalline Aluminium Oxide: A Mild and Efficient Reusable Catalyst for the One-Pot Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation,” Monatshefte Für Chemie/Chemical Monthly 140 (2009): 1343–7.
  • B. P. Reddy, P. Iniyavan, S. Sarveswari, and V. Vijayakumar, “Nickel Oxide Nanoparticles Catalyzed Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation Reaction,” Chinese Chemical Letters 25 (2014): 1595–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.