232
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition

ORCID Icon, & ORCID Icon
Pages 6501-6509 | Received 26 May 2021, Accepted 16 Sep 2021, Published online: 28 Sep 2021

References

  • M. Shiri, M. A. Zolfigol, H. G. Kruger, and Z. Tanbakouchian, “Bis- and Trisindolylmethanes (BIMs and TIMs),” Chemical Reviews 110, no. 4 (2010): 2250–93.
  • P. P. Kaishap, and C. Dohutia, “Synthetic Approaches for Bis (Indolyl) Methanes,” International Journal of Pharmaceutical Sciences and Research 4, no. 4 (2013): 1312–22. http://dx.doi.org/10.13040/IJPSR.0975-8232.4(4).1312-22.
  • (a) T. Fukuyama, and X. Chen, “Stereocontrolled Synthesis of (-)-Hapalindole G,” Journal of the American Chemical Society 116, no. 7 (1994): 3125–3126. (b) A. O. Abdelhamid, S. M. Gomha, and S. M. Kandeel, “Synthesis of Certain New Thiazole and 1,3,4 Thiadiazole Derivatives via the Utility of 3-Acetylindole,” Journal of Heterocyclic Chemistry 54, no. 2 (2017): 1529–1536. https://doi.org/10.1002/jhet.2740.
  • (a) M. Mari, A. Tassoni, S. Lucarini, M. Fanelli, G. Piersanti, and G. Spadoni, “Brønsted Acid Catalyzed Bisindolization of α-Amido Acetals: Synthesis and Anticancer Activity of Bis(indolyl)ethanamino Derivatives,” European Journal of Organic Chemistry 2014, no. 18 (2014): 3822–3830. (b) A. O. Abdelhamid, S. M. Gomha, N. A. Abdelriheem, S. M. Kandeel, “Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents,” Molecules 21, no. 7 (2016): 929. https://doi.org/10.3390/molecules21070929.
  • (a) S. Sarva, J. S. Harinath, S. P. Sthanikam, S. Ethiraj,; M. Vaithiyalingam,; S.R. Cirandur, “Synthesis Antibacterial and Anti-Inflammatory Activity of Bis(indolyl)methanes,” Chinese Chemical Letters 27, no. 1 (2016), 16–20. (b) S. M. Gomha, S. M. Riyadh, “Synthesis under Microwave Irradiation of [1,2,4]Triazolo[3,4-b][1,3,4]thiadiazoles and Other Diazoles Bearing Indole Moieties and Their Antimicrobial Evaluation,” Molecules 16, no. 10 (2011): 8244–8256. https://doi.org/10.3390/molecules16108244. (c)F. B. Essa, A. Bazbouz, S. Alhilalb, S. A. Ouf, S. M. Gomha, “Synthesis and Biological Evaluation of an Indole Core-Based Derivative with Potent Antimicrobial Activity,” Research on Chemical Intermediates 44, no. 9 (2018): 5345–5356. https://doi.org/10.1007/s11164-018-3426-9. (d) I. M. Abbas, S. M. Riyadh, M. A. Abdallah, S. M. Gomha, “A novel Route to Tetracyclic Fused Tetrazines and Thiadiazines,” Journal of Heterocyclic Chemistry 43, no. 4 (2006): 935–942. https://doi.org/10.1002/jhet.5570430419.
  • G. Sivaprasad, P. T. Perumal, V. R. Prabavathy, and N. Mathivanan, “Synthesis and anti-Microbial Activity of pyrazolylbisindoles-Promising anti-Fungal Compounds,” Bioorganic & Medicinal Chemistry Letters 16, no. 24 (2006): 6302–5.
  • K. V. Sashidhara, A. Kumar, M. Kumar, A. Srivastava, and A. Puri, “Synthesis and Antihyperlipidemic Activity of Novel Coumarin Bisindole Derivatives,” Bioorganic & Medicinal Chemistry Letters 20, no. 22 (2010): 6504–7.
  • K. Sujatha, P. T. Perumal, D. Muralidharan, and M. Rajendran, “Synthesis, Analgesic and Anti-Inflammatory Activities of Bis(Indolyl)methanes,” Indian Journal of Chemistry 48B (2009): 267–72. http://nopr.niscair.res.in/handle/123456789/3432.
  • Y. Gong, G. L. Firestone, and L. F. Bjeldanes, “3,3'-Diindolylmethane is a Novel Topoisomerase IIalpha Catalytic Inhibitor that Induces S-Phase Rretardation and Mitotic Delay in Human Hepatoma HepG2 Cells,” Molecular Pharmacology 69, no. 4 (2006): 1320–7.
  • T. Osawa, and M. Namiki, “Structure Elucidation of Streptindole, a Novel Genotoxic Metabolite Isolated from Intestinal Bacteria,” Tetrahedron Letters. 24, no. 43 (1983): 4719–22.
  • S. B. Bharate, J. B. Bharate, S. I. Khan, B. L. Tekwani, M. R. Jacob, R. Mudududdla, R. R. Yadav, B. Singh, P. R. Sharma, S. Maity, et al. “Discovery of 3,3'-Diindolylmethanes as Potent Antileishmanial Agents,” European Journal of Medicinal Chemistry 63 (2013): 435–43.
  • M. Kobayashi, S. Aoki, K. Gato, K. Matsunami, M. Kurosu, and I. Kitagawa, “Marine Natural Products XXXIV Trisindoline, a New Antibiotic Indole Trimer, Produced by a Bacterium of Vibrio sp. separated from the Marine Sponge Hyrtios Altum,” Chemical & Pharmaceutical Bulletin 42, no. 12 (1994): 2449–51.
  • C. Bonnesen, I. M. Eggleston, and J. D. Hayes, “Dietary Indoles and Isothiocyanates That Are Generated from Cruciferous Vegetables Can Both Stimulate Apoptosis and Confer Protection against DNA Damage in Human Colon Cell Lines,” Cancer Research 61, no. 16 (2001): 6120–30. https://cancerres.aacrjournals.org/content/61/16/6120.short.
  • R. Martinez, A. Espinosa, A. Tarraga, and P. Molina, “Bis(Indolyl)Methane Derivatives as Highly Selective Colourimetric and Ratiometric Fluorescent Molecular Chemosensors for Cu2+ Cations,” Tetrahedron 64, no. 9 (2008): 2184–91.
  • R. Pegu, R. Mandal, A. K. Guha, and S. Pratihar, “A Selective Ratiometric Fluroride Ion Sensor with a (2,4-Dinitrophenyl) Hydrazine Derivative of Bis (Indolyl) Methane and Its Mode of Interaction,” New Journal of Chemistry 39, no. 8 (2015): 5984–90.
  • X. He, S. Hu, K. Liu, Y. Guo, J. Xu, and S. Shao, “Oxidized Bis(Indolyl)Methane: A Simple and Efficient Chromogenic-Sensing Molecule Based on the Proton Transfer Signaling Mode,” Organic Letters 8, no. 2 (2006): 333–6.
  • D. Sain, C. Kumari, A. Kumar, and S. Dey, “Indole-Based Distinctive Chemosensors for ‘Naked-Eye’ Detection of CN and HSO4−, Associated with Hydrogen-Bonded Complex and Their DFT Study,” Supramolecular Chemistry 28, no. 3–4 (2016): 239–48.
  • R. Nagarajan, and P. T. Perumal, “InCl3 and in(OTf)3 Catalyzed Reactions: synthesis of 3-Acetyl Indoles, Bis-Indolylmethane and Indolylquinoline Derivatives,” Tetrahedron 58, no. 6 (2002): 1229–32.
  • J. Beltrá, M. C. Gimeno, and R. P. Herrera, “A New Approach for the Synthesis of Bisindoles through AgOTf as Catalyst,” Beilstein Journal of Organic Chemistry 10 (2014): 2206–14.
  • D. Chen, L. Yu, and P. G. Wang, “Lewis Acid-Catalyzed Reactions in Protic Media. Lanthanide-Catalyzed Reactions of Indoles with Aldehydes or Ketones,” Tetrahedron Letters 37, no. 26 (1996): 4467–70.
  • J. S. Yadav, B. V. S. Reddy, C. V. S. R. Murthy, G. M. Kumar, and C. Madan, “Lithium Perchlorate Catalyzed Reactions of Indoles: An Expeditious Synthesis of Bis(Indolyl)Methanes,” Synthesis 2001, no. 05 (2001): 0783–7.
  • G. Gupta, G. Chaudhari, P. Tomar, Y. Gaikwad, R. Azad, G. Pandya, G. Waghulde, and K. Patil, “Synthesis of Bis(Indolyl)Methanes Using Molten N-Butylpyridinium Bromide,” European Journal of Chemistry 3, no. 4 (2012): 475–9.
  • H. Veisi, B. Maleki, F. H. Eshbala, H. Veisi, R. Masti, S. S. Ashrafi, and M. Baghayeri, “In Situ Generation of Iron(Iii) Dodecyl Sulfate as Lewis Acid-Surfactant Catalyst for Synthesis of Bis-Indolyl, Tris-Indolyl, Di(Bis-Indolyl), Tri(Bis-Indolyl), Tetra(Bis-Indolyl)Methanes and 3-Alkylated Indole Compounds in Water,” RSC Advances 4, no. 58 (2014): 30683–8.
  • Z. K. Jaberi, and L. Zarei, “Rapid Synthesis of 2-Substituted-2,3-Dihydro-4(1H)-Quinazolinones Using Boric Acid or Sodium Dihydrogen Phosphate under Solvent-Free Conditions,” South African Journal of Chemistry 65 (2012): 36–8. https://www.ajol.info/index.php/sajc/article/view/123758.
  • X. Cheng, S. Vellalath, R. Goddard, and B. Lis, “Direct Catalytic Asymmetric Synthesis of Cyclic Aminals from Aldehydes,” Journal of the American Chemical Society 130, no. 47 (2008): 15786–7.
  • A. G. Choghamarani, and T. Taghipour, “Green and One-Pot Three-Component Synthesis of 2,3-Dihydroquinazolin- 4(1H)-Ones Promoted by Acetic Acid as Recoverable Catalyst in Water,” Letters in Organic Chemistry 8, no. 7 (2011): 470–6.
  • R. A. Bunce, and B. Nammalwar, “New Conditions for Synthesis of (±)-2-Monosubstituted and (±)-2,2-Disubstituted 2,3-Dihydro-4(1H)-Quinazolinones from 2-Nitro- and 2-Aminobenzamide,” Journal of Heterocyclic Chemistry 48, no. 5 (2011): 991–7.
  • A. Rostami, and A. Tavakoli, “Sulfamic Acid as a Reusable and Green Catalyst for Efficient and Simple Synthesis of 2-Substituted-2,3-Dihydroquinazolin-4(1H)-Ones in Water or Methanol,” Chinese Chemical Letters 22, no. 11 (2011): 1317–20.
  • J. Zhou, and J. Fang, “One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers,” The Journal of Organic Chemistry 76, no. 19 (2011): 7730–6.
  • N. B. Darvatkar, S. V. Bhilare, A. R. Deorukhkar, D. G. Raut, and M. M. Salunkhe, “HSO4: An Efficient and Reusable Catalyst for One-Pot Three-Component Synthesis of 2,3-Dihydro-4(1H)-Quinazolinones,” Green Chemistry Letters and Reviews 3, no. 4 (2010): 301–6.
  • J. Chen, W. Su, H. Wu, M. Liu, and C. Jin, “Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones in Ionic Liquids or Ionic Liquid–Water without Additional Catalyst,” Green Chemistry 9, no. 9 (2007): 972–5.
  • A. Shaabani, A. Maleki, and H. Mofakham, “Click Reaction: Highly Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Synthetic Communications 38, no. 21 (2008): 3751–9.
  • A. Davoodnia, S. Allameh, A. R. Fakhari, and T. Hoseini, “Highly Efficient Solvent-Free Synthesis of Quinazolin-4(3H)-Ones and 2,3-Dihydroquinazolin-4(1H)-Ones Using Tetrabutylammonium Bromide as Novel Ionic Liquid Catalyst,” Chinese Chemical Letters 21, no. 5 (2010): 550–3.
  • L. Y. Zeng, and C. Cai, “Iodine: Selectively Promote the Synthesis of Mono Substituted Quinazolin-4(3H)-Ones and 2,3-Dihydroquinazolin-4(1H)-Ones in One-Pot,” Journal of Heterocyclic Chemistry 47, no. 5 (2010): 1035–9.
  • J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, and W. Su, “Gallium(III) Triflate-Catalyzed One-Pot Selective Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones,” Tetrahedron Letters 49, no. 23 (2008): 3814–8.
  • R. A. Qiao, B. L. Xu, and Y. H. Wang, “A Facile Synthesis of 2-Substituted-2,3-Dihydro-4(1H)-Quinazolinones in 2,2,2-Trifluoroethanol,” Chinese Chemical Letters 18, no. 6 (2007): 656–8.
  • M. L. Deb, and P. J. Bhuyan, “An Efficient and Clean Synthesis of Bis(Indolyl)Methanes in a Protic Solvent at Room Temperature,” Tetrahedron Letters 47, no. 9 (2006): 1441–3.
  • D. Shi, L. Rong, J. Wang, Q. Zhuang, X. Wang, and H. Hu, “Synthesis of Quinazolin-4(3H)-Ones and 1,2-Dihydroquinazolin-4(3H)-Ones with the Aid of a Low-Valent Titanium Reagent,” Tetrahedron Letters 44, no. 15 (2003): 3199–201.
  • L.-P. Mo, Z.-C. Ma, and Z.-H. Zhang, “CuBr2-Catalyzed Synthesis of Bis(Indolyl)Methanes,” Synthetic Communications 35, no. 15 (2005): 1997–2004.
  • D. Sun, G. Jiang, Z. Xie, and Z. Le, “α-Chymotrypsin-Catalyzed Synthesis of Bis(Indolyl)Alkanes in Water,” Chinese Journal of Chemistry 33, no. 4 (2015): 409–12.
  • B. Sadeghi, F. A. Tavasoli, and A. Hassanabadi, “Ag Nanoparticles: An Efficient and Versatile Reagent for Synthesis of Bis(Indolyl)Methanes,” Synthesis and Reactivity in Inorganic Metal 45, no. 9 (2015): 1396–400.
  • S. R. Mendes, S. Thurow, F. Penteado, M. S. Da Silva, R. A. Gariani, G. Perin, and E. J. Lenardao, “Synthesis of Bis(Indolyl)Methanes Using Ammonium Niobium Oxalate (ANO) as an Efficient and Recyclable Catalyst,” Green Chemistry 17, no. 8 (2015): 4334–9.
  • C. C. Silveira, S. R. Mendes, F. M. Líbero, E. J. Lenardao, and G. Perin, “Glycerin and CeCl3·7H2O: A New and Efficient Recyclable Medium for the Synthesis of Bis(Indolyl)Methanes,” Tetrahedron Letters 50, no. 44 (2009): 6060–3.
  • J.-T. Li, H.-G. Dai, W.-Z. Xu, and T.-S. Li, “An Efficient and Practical Synthesis of Bis(Indolyl)Methanes Catalyzed by Aminosulfonic Acid under Ultrasound,” Ultrasonics Sonochemistry 13, no. 1 (2006): 24–7.
  • S.-J. Ji, S.-Y. Wang, Y. Zhang, and T.-P. Loh, “Facile Synthesis of Bis(Indolyl)Methanes Using Catalytic Amount of Iodine at Room Temperature under Solvent-Free Conditions,” Tetrahedron 60, no. 9 (2004): 2051–5.
  • M. Zahran, Y. Abdin, and H. Salama, “Eco-Friendly and Efficient Synthesis of Bis(Indolyl)Methanes under Microwave Irradiation,” Arkivoc 2008, no. 11 (2008): 256–65.
  • N. Seyedi, and M. Kalantari, “An Efficient Green Procedure for the Synthesis of Bis (Indolyl) Methanes in Water,” Journal of Sciences, Islamic Republic Of Iran 24, no. 3 (2013): 205–8.
  • L. Malkania, P. Bedi, and T. Pramanik, “Lactic Acid Catalyzed and Microwave-Assisted Green Synthesis of Pharmaceutically Important Bis(Indolyl) Methane Analogs in Aqueous Medium,” Drug Invention Today 10, no. 9 (2018): 1740–1744.
  • N. D. Kokare, J. N. Sangshetti, and D. B. Shinde, “Oxalic Acid as a Catalyst for Efficient Synthesis of Bis(Indolyl)Methanes and 14-Aryl-14H-Dibenzo[a,j]Xanthenes in Water,” Chinese Chemical Letters 19, no. 10 (2008): 1186–9.
  • S. B. Kasar, and S. R. Thopate, “Synthesis of Bis(Indolyl)Methanes Using Naturally Occurring, Biodegradable Itaconic Acid as a Green and Reusable Catalyst,” Current Organic Synthesis 15, no. 1 (2018): 110–5.
  • J. Bayardon, J. Holz, B. Schaffner, V. Andrushko, S. Verevkin, A. Preetz, and A. Borner, “Propylene Carbonate as a Solvent for Asymmetric Hydrogenations,” Angewandte Chemie (International ed. in English) 46, no. 31 (2007): 5971–4.
  • P. G. Jessop, “Searching for Green Solvents,” Green Chemistry 13, no. 6 (2011): 1391–8.
  • Z. Zhang, J. Song, and B. Han, “Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids,” Chemical Reviews 117, no. 10 (2017): 6834–80.
  • (a) S. M. Gomha, and K. D. Khalil, “A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity,” Molecules 17, no. 8 (2012): 9335–9347. (b) F. S. Elsharabasy, S. M. Gomha, T. A. Farghaly, H. S. A. Elzahabi, “An Efficient Synthesis of Novel Bioactive Thiazolyl-Phthalazinediones under Ultrasound Irradiation,” Molecules 22, no. 2 (2017) 319. https://doi.org/10.3390/molecules22020319.
  • R. T. Stanko, D. L. Tietze, and J. E. Arch, “Body Composition, Energy Utilization, and Nitrogen Metabolism with a 4.25-MJ/d low-energy diet supplemented with pyruvate,” The American Journal of Clinical Nutrition 56, no. 4 (1992): 630–5.
  • R. T. Stanko, H. R. Reynolds, R. Hoyson, J. E. Janosky, and R. Wolf, “Pyruvate Supplementation of a Low-Cholesterol, Low-Fat Diet: effects on Plasma Lipid Concentrations and Body Composition in Hyperlipidemic Patients,” The American Journal of Clinical Nutrition 59, no. 2 (1994): 423–7.
  • R. T. Stanko, R. J. Robertson, R. W. Galbreath, J. J. Reilly, K. D. Greenawalt, Jr, and F. L. Goss, “Enhanced Leg Exercise Endurance with a High-Carbohydrate Diet and Dihydroxyacetone and Pyruvate,” Journal of Applied Physiology (Bethesda, Md. : 1985) 69, no. 5 (1990): 1651–6.
  • L. W. DeBoer, P. A. Bekx, L. Han, and L. Steinke, “Pyruvate Enhances Recovery of Rat Hearts after Ischemia and Reperfusion by Preventing Free Radical Generation,” The American Journal of Physiology 265, no. 5 Pt 2 (1993): H1571–1576.
  • A. B. Borle, and R. T. Stanko, “Pyruvate Reduces Anoxic Injury and Free Radical Formation in Perfused Rat Hepatocytes,” The American Journal of Physiology 270, no. 3 Pt 1 (1996): G535–540.
  • B. R. Nemallapudi, G. V. Zyryanov, B. Avula, M. R. Guda, and S. Gundala, “An Effective Green and Ecofriendly Catalyst for Synthesis of Bis(Indolyl)Methanes as Promising Antimicrobial Agents,” Journal of Heterocyclic Chemistry 56, no. 12 (2019): 3324–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.