152
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A Simple and Efficient [(n-Bu3Sn)2MO4]n Catalyzed Synthesis of Quinazolinones and Dihydroquinazolinones

, , , , , & show all
Pages 6583-6591 | Received 15 Aug 2021, Accepted 20 Sep 2021, Published online: 07 Oct 2021

References

  • J. B. Jiang, D. P. Hesson, B. A. Dusak, D. L. Dexter, G. J. Kang, and E. Hamel, “Synthesis and Biological Evaluation of 2-Styrylquinazolin-4(3H)-Ones, A New Class of Antimitotic Anticancer Agents Which Inhibit Tubulin Polymerization,” Journal of Medicinal Chemistry 33, no. 6 (1990): 1721–8.
  • S.-L. Cao, Y.-P. Feng, Y.-Y. Jiang, S.-Y. Liu, G.-Y. Ding, and R.-T. Li, “Synthesis and in Vitro Antitumor Activity of 4(3H)-Quinazolinone Derivatives with Dithiocarbamate Side Chains,” Bioorganic & Medicinal Chemistry Letters 15, no. 7 (2005): 1915–7.
  • J.-W. Chern, P.-L. Tao, K.-C. Wang, A. Gutcait, S.-W. Liu, M.-H. Yen, S.-L. Chien, and J.-K. Rong, “Studies on Quinazolines and 1,2,4-Benzothiadiazine 1,1-Dioxides. 8.1, 2 Synthesis and Pharmacological Evaluation of Tricyclic Fused Quinazolines and 1,2,4-Benzothiadiazine 1,1-Dioxides as Potential Alpha1-Adrenoceptor Antagonists,” Journal of Medicinal Chemistry 41, no. 17 (1998): 3128–41.
  • J. F. Wolfe, T. L. Rathman, M. C. Sleevi, J. A. Campbell, and T. D. Greenwood, “Synthesis and Anticonvulsant Activity of Some New 2-Substituted 3-Aryl-4(3H)-Quinazolinones,” Journal of Medicinal Chemistry 33, no. 1 (1990): 161–6.
  • W. Pendergast, J. V. Johnson, S. H. Dickerson, I. K. Dev, D. S. Duch, R. Ferone, W. R. Hall, J. Humphreys, J. M. Kelly, and D. C. Wilson, “Benzoquinazoline Inhibitors of Thymidylate Synthase: enzyme Inhibitory Activity and Cytotoxicity of Some 3-Amino- and 3-Methylbenzo[f]Quinazolin-1(2H)-Ones,”Journal of Medicinal Chemistry 36no. 16 (1993): 2279–91. no.
  • Pei-Pei. Kung, M. D. Casper, K. L. Cook, L. Wilson-Lingardo, L. M. Risen, T. A. Vickers, R. Ranken, L. B. Blyn, J. R. Wyatt, P. D. Cook, et al. “Structure-Activity Relationships of Novel 2-Substituted Quinazoline Antibacterial Agents,”Journal of Medicinal Chemistry 42no. 22 (1999): 4705–13. no.
  • F. Rorsch, Estel la Buscato, K. Deckmann, G. Schneider, M. Schubert-Zsilavecz, G. Geisslinger, E. Proschak, and S. Grösch, “Structure–Activity Relationship of Nonacidic Quinazolinone Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGES 1),” Journal of Medicinal Chemistry 55, no. 8 (2012): 3792–803.
  • S. E. de Laszlo, C. S. Quagliato, W. J. Greenlee, A. A. Patchett, R. S. Chang, V. J. Lotti, T. B. Chen, S. A. Scheck, K. A. Faust, and S. S. Kivlighn, “A Potent, Orally Active, Balanced Affinity Angiotensin II AT1 Antagonist and AT2 Binding Inhibitor,” Journal of Medicinal Chemistry 36, no. 21 (1993): 3207–10.
  • C. Mustazza, A. Borioni, I. Sestili, M. Sbraccia, A. Rodomonte, R. Ferretti, and M. Rosaria. Del Giudice, “Synthesis and Evaluation as NOP Ligands of Some Spiro[Piperidine-4,2'(1'H)-Quinazolin]-4'(3'H)-Ones and Spiro[Piperidine-4,5'(6'H)-[1,2,4]Triazolo[1,5-C]Quinazolines],” Chemical & Pharmaceutical Bulletin 54, no. 5 (2006): 611–22.
  • M. S. Malamas, and J. Millen, “Quinazolineacetic Acids and Related Analogues as Aldose Reductase Inhibitors,” Journal of Medicinal Chemistry 34, no. 4 (1991): 1492–503.
  • A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (Eds.). Comprehensive Heterocyclic Chemistry III. Oxford, UK: Elsevier, 2008.
  • D. A. Horton, G. T. Bourne, and M. L. Smythe, “The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures,” Chemical Reviews 103, no. 3 (2003): 893–930. no.
  • S. B. Mhaske, and N. P. Argade, “The Chemistry of Recently Isolated Naturally Occurring Quinazolinone Alkaloids,” Tetrahedron 62, no. 42 (2006): 9787.
  • S. Ho Lee, J.-K. Son, B. S. Jeong, T.-C. Jeong, H. W. Chang, E.-S. Lee, and Y.d. Jahng, “Progress in the Studies on Rutaecarpine,” Molecules (Basel, Switzerland) 13, no. 2 (2008): 272–300.
  • P. V. N. S. Murthy, D. Rambabu, G. Rama Krishna, C. M. Reddy, K. R. S. Prasad, M. V. Basaveswara Rao, and M. Pal, “Amberlyst-15 Mediated Synthesis of 2-Substituted 2,3-Dihydroquinazolin-4(1H)-Ones and Their Crystal Structure Analysis,” Tetrahedron Letters 53, no. 7 (2012): 863–7.
  • A. Shaabani, A. Maleki, and H. Mofakham, “Click Reaction: Highly Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Synthetic Communications 38, no. 21 (2008): 3751–9.
  • N. B. Darvatkar, S. V. Bhilare, A. R. Deorukhkar, D. G. Raut, and M. M. Salunkhe, “[bmim]HSO4: An Efficient and Reusable Catalyst for One-Pot Three-Component Synthesis of 2,3-Dihydro-4(1H)-Quinazolinones,” Green Chemistry Letters and Reviews 3, no. 4 (2010): 301–6.
  • J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, and W. Su, “Gallium (III) Triflate-Catalyzed One-Pot Selective Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones,” Tetrahedron Letters 49, no. 23 (2008): 3814–8.
  • A. Ghorbani-Choghamarani, and T. Taghipour, “Green and One-Pot Three-Component Synthesis of 2,3-Dihydroquinazolin- 4(1H)-Ones Promoted by Citric Acid as Recoverable Catalyst in Water,” Letters in Organic Chemistry 8, no. 7 (2011): 470–6.
  • J. Chen, W. Su, H. Wu, M. Liu, and C. Jin, “Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones in Ionic Liquids or Ionic Liquid–Water without Additional Catalyst,” Green Chemistry 9, no. 9 (2007): 972–5.
  • M. Rueping, A. P. Antonchick, E. Sugiono, and K. Grenader, “Asymmetric Brønsted Acid Catalysis: Catalytic Enantioselective Synthesis of Highly Biologically Active Dihydroquinazolinones,” Angewandte Chemie (International ed. in English) 48, no. 5 (2009): 908–10.
  • R. J. Abdel-Jalil, W. Voelter, and M. Saeed, “A Novel Method for the Synthesis of 4(3H)-Quinazolinones,” Tetrahedron Letters 45, no. 17 (2004): 3475–6.
  • A. Davoodnia, S. Allameh, A. R. Fakhari, and N. Tavakoli-Hoseini, “Highly Efficient Solvent-Free Synthesis of Quinazolin-4 (3H)-Ones and 2,3-Dihydroquinazolin-4 (1H)-Ones Using Tetrabutylammonium Bromide as Novel Ionic Liquid Catalyst,” Chinese Chemical Letters 21, no. 5 (2010): 550–3.
  • L. Zhou, Y. Liu, Y. Zhang, and J. Wang, “Sequential Au(I)-Catalyzed Reaction of Water with o-Acetylenyl-Substituted Phenyldiazoacetates,” Beilstein Journal of Organic Chemistry 7 (2011): 631–7.
  • X. Cheng, S. Vellalath, R. Goddard, and B. List, “Direct Catalytic Asymmetric Synthesis of Cyclic Aminals from Aldehydes,” Journal of the American Chemical Society 130, no. 47 (2008): 15786–7.
  • L.-Y. Zeng, and C. Cai, “Iodine: Selectively Promote the Synthesis of Mono Substituted Quinazolin-4(3H)-Ones and 2,3-Dihydroquinazolin-4(1H)-Ones in One-Pot,” Journal of Heterocyclic Chemistry 47, no. 5 (2010): 1035–9.
  • S. B. Bharate, N. Mupparapu, S. Manda, J. B. Bharate, R. Mudududdla, R. R. Yadav, and R. A. Vishwakarma, “Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Using Heterogeneous Solid Acid Catalysts: unexpected Formation of 2,3-Dihydro-2-(4-(Tetrahydro-2H-Pyran-2-Yloxy) Butyl)-Quinazolin-4(1H)-One,” Arkivoc 2012, no. 8 (2012): 308–18.
  • N. N. Pesyan, A. D. Asl, and S. Namdar, “A Novel Magnetic Nanocatalyst Fe3O4@PEG–Ni for the Green Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Applied Organometalic Chemistry 34, no. 8 (2020): e5710.
  • A. V. Dhanunjaya Rao, B. P. Vykunteswararao, T. Bhaskarkumar, Nivrutti R. Jogdand, D. Kalita, J. Kumar, D. Lilakar, V. Siddaiah, P. D. Sanasi, and A. Raghunadh, “Sulfonic Acid Functionalized Wang Resin (Wang-OSO3H) as Polymeric Acidic Catalyst for the Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Tetrahedron Letters 56, no. 32 (2015): 4714–7.
  • Md A. Erfan, B. Akhlaghinia, and S. S. E. Ghodsinia, “An Efficient Green Protocol for Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Using SBA-16/GPTMS-TSC-CuI under Solvent-Free Conditions,” ChemistrySelect 5, no. 7 (2020): 2306–16.
  • A. Bordoloi, and S. B. Halligudi, “Tungsten- and Molybdenum-Based Coordination Polymer-Catalyzed N-Oxidation of Primary Aromatic Amines with Aqueous Hydrogen Peroxide,” Advanced Synthesis & Catalysis 349, no. 13 (2007): 2085–8.
  • P. Choudhary, A. Bahuguna, A. Kumar, S. Singh Dhankhar, C. M. Nagaraja, and V. Krishnan, “Oxidized Graphitic Carbon Nitride as a Sustainable Metal-Free Catalyst for Hydrogen Transfer Reactions under Mild Conditions,” Green Chemistry 22, no. 15 (2020): 5084–95.
  • D. Sarma, B. Majumdar, B. Deor, S. Jain, and T. K. Sarma, “Photoinduced Enhanced Decomposition of TBHP: A Convenient and Greener Pathway for Aqueous Domino Synthesis of Quinazolinones and Quinoxalines,” ACS Omega 6, no. 18 (2021): 11902–10.
  • A. V. Chate, P. P. Rudrawar, G. M. Bondle, and J. N. Sangeshetti, “2-Aminoethanesulfonic Acid: An Efficient Organocatalyst for Green Synthesis of Spirooxindole Dihydroquinazolinones and Novel 1,2-(Dihydroquinazolin-3(4H) Isonicotinamides in Water,” Synthetic Communications 50, no. 2 (2020): 226–42.
  • V. N. Murthy, S. P. Nikumbh, T. Krishnaji, M. V. Madhubabu, J. Subba Rao, L. Vaikunta Rao, and A. Raghunadh, “Amberlite-15 Promoted an Unprecedented Aza Michael Rearrangement for One Pot Synthesis of Dihydroquinazolinone Compounds,” RSC Advances 8, no. 40 (2018): 22331–4. no.
  • P. K. Setikam, V. N. Murthy, K. Ravi Ganesh, R. Venkateshwarlu, G. Srinivas Rao, T. Krishnaji, and A. Raghunadh, “A New Facile Iodine-Promoted One-Pot Synthesis of Dihydroquinazolinone Compounds,” ChemistrySelect 3, no. 24 (2018): 6836–9.
  • Ch Jaganmohan, K. P. Vinay Kumar, G. Sandeep Reddy, S. Mohanty, J. Kumar, B. Venkateswara Rao, T. Krishnaji, and A. Raghunadh, “De Novo Synthesis of 2,2-Bis(Dimethylamino)-3-Alkyl or Benzyl 2,3-Dihydroquinazolin-4(1H)-One Compounds,” Synthetic Communications 48, no. 2 (2018): 168–74.
  • T. Krishnaji, V. N. Murthy, A. Raghunadh, and L. V. Rao, “Simple and Efficient Amberlite 15-Catalyzed Synthesis of Dihydroquinazolinones,” Russian Journal of Organic Chemistry 56, no. 8 (2020): 1468–75.
  • A. Raghunadh, T. Krishnaji, M. Suresh Babu, V. Narayana Murthy, L. Vaikunta Rao, and U. K. Syam Kumar, “Synthesis of Quinoxalin-2(1H)-Ones and Hexahydroquinoxalin-2(1H)-Ones via Oxidative Amidation–Heterocycloannulation,” SynOpen 4, no. 3 (2020): 54–61.
  • Ch Jaganmohan, K. P. Vinay Kumar, R. Venkateshwarlu, S. Mohanty, J. Kumar, B. Venkateswara Rao, A. Raghunadh, and T. Krishnaji, “A Novel Approach for the Synthesis of Functionalized Hydroxylamino Derivative of Dihydroquinazolinones,” Synthetic Communications 50, no. 14 (2020): 2163–70.
  • R. Venkateshwarlu, V. N. Murthy, T. Krishnaji, S. P. Nikumbh, R. Jinkala, V. Siddaiah, M. V. M. Babu, H. Rama Mohan, and A. Raghunadh, “Base Mediated Spirocyclization of Quinazoline: one-Step Synthesis of Spiro-Isoindolinone Dihydroquinazolinones,” RSC Advances 10, no. 16 (2020): 9486–91.
  • M. Abrantes, A. A. Valente, M. Pillinger, I. S. Gonçalves, J. Rocha, and C. C. Romão, “Preparation and Characterization of Organotin–Oxomolybdate Coordination Polymers, Their Use in Sulfoxidation Catalysis,” Chemistry - A European Journal 9, no. 12 (2003): 2685–95.
  • J. Song, B. Zhang, T. Wu, G. Yang, and B. Han, “Organotin-Oxomolybdate Coordination Polymer as Catalyst for Synthesis of Unsymmetrical Organic Carbonates,” Green Chemistry 13, no. 4 (2011): 922–7.
  • M. Abrantes, A. A. Valente, I. S. Goncalves, M. Pillinger, and C. C. Romao, “Organotin-Oxomolybdate Coordination Polymers as Catalysts for the Epoxidation of Cyclooctene,” Journal of Molecular Catalysis A: Chemical 238, no. 1–2 (2005): 51–5.
  • A. Bordoloi, F. Lefebvre, and S. B. Halligudi, “Organotin-Oxometalate Coordination Polymer Catalyzed Oxyfunctionalization of Monoterpenes,” Journal of Molecular Catalysis A: Chemical 270, no. 1–2 (2007): 177–84.
  • P. Choudhary, A. Sen, A. Kumar, S. Dhingra, C. M. Nagaraja, and V. Krishnan, “Sulfonic Acid Functionalized Graphitic Carbon Nitride as Solid Acid–Base Bifunctional Catalyst for Knoevenagel Condensation and Multicomponent Tandem Reactions,” Materials Chemistry Frontiers 5, no. 16 (2021): 6265–78.
  • X. Zhang, C. Luo, X. Chen, W. Ma, B. Li, Z. Lin, X. Chen, Y. Li, and F. Xie, “Direct Synthesis of Quinazolinones via the Carbon-Supported Acid-Catalyzed Cascade Reaction of Isatoic Anhydrides with Amides and Aldehydes,” Tetrahedron Letters 66 (2021): 152835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.