287
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, E-pharmacophore, Molecular Docking Studies with SARS-CoV-2 Protease, Their Biological Properties and DFT Calculation of Some New Indolo[3,2-c]Isoquinoiline Hybrids

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 80-101 | Received 31 Jul 2021, Accepted 11 Nov 2021, Published online: 30 Nov 2021

References

  • H. A. Rothan and S. N. Byrareddy, “The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak,” Journal of Autoimmunity 109 (2020): 102433.
  • https://www.WHO Health Emergency DashboardWHO (COVID-19).
  • A. A. Rabaan, S. H. Al-Ahmed, S. Haque, R. Sah, R. Tiwari, Y. S. Malik, K. Dhama, M. I. Yatoo, D. K. Bonilla-Aldana, and A. J. Rodriguez-Morales, “SARS-CoV-2, SARS-CoV, and MERS-COV: A Comparative Overview,” InfezMed 28, no. 2 (2020): 174–84.
  • J. P. F. Bai and C. W. Hsu, “Drug Repurposing for Ebola Virus Disease: principles of Consideration and the Animal Rule,” Journal of Pharmaceutical Sciences 108, no. 2 (2019): 798–806.
  • D. Athauda and T. Foltynie, “Drug Repurposing in Parkinson’s Disease,” CNS Drugs 32, no. 8 (2018): 747–61.
  • PANGO. LineageB.1.617 [WWW Document]. PANGOLineages (2021). https://covlineages.org/lineages/lineage_B.1.617.html.
  • K. Tolaro and A. Tolaro, Foundation of Microbiology (Dubuque: W.C. Brown Publisher, 1993), 326.
  • T. J. Opperman, S. M. Kwasny, J. Bo Li, M. A. Lewis, D. Aiello, J. D. Williams, N. P. Peet, D. T. Moir, T. L. Bowlin, and E. C. Long, “DNA Targeting as a Likely Mechanism Underlying the Antibacterial Activity of Synthetic Bis-Indole Antibiotics,” Antimicrobial Agents and Chemotherapy 60, no. 12 (2016): 7067–76.
  • W. C. Tse and D. L. Boger, “Sequence-Selective DNA Recognition: natural Products and Nature's Lessons,” Chemistry & Biology 11, no. 12 (2004): 1607–17.
  • S. M. Deepa, D. G. Beverley, and D. Santy, “Melatonin: New Places in Therapy,” Bioscience Reports 27, no. 6 (2007): 299–320.
  • S. Abu-Melha, M. M. Edrees, S. M. Riyadh, M. R. Abdelaziz, A. A. Elfiky, and S. M. Gomha, “Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (Mpro),” Molecules 25 (2020): 4565. 25194565.
  • S. M. Gomha, Z. A. Muhammad, E. E.El-Arab, A. M. Elmetwally, A. A. El-Sayed, and I. K. Matar, “Design, Synthesis, Molecular Docking Study and anti-Hepatocellular Carcinoma Evaluation of New Bis-Triazolothiadiazines,” Mini Reviews in Medicinal Chemistry 20, no. 9 (2020): 788–800.
  • M. Taheri, R. Mohebat, and M. H. Mosslemin, “Multi-Component Reaction Synthesis of Novel 3-Phenyl-3,4-Dihydro-2H-Benzo[a][1,3] Oxazino[5,6-c]Phenazine Derivatives Catalyzed by Reusable ZnO-PTA@Fe3O4/EN-MIL-101(Cr) Nanopowder at Room Temperature,” Green Chemistry Letters and Reviews 13, no. 3 (2020): 179–91.
  • A. Noor, N. Gul Qazi, H. Nadeem, Arif ullah Khan, R. Z. Paracha, F. Ali, and d A. Saeed, “Synthesis, Characterization, anti-Ulcer Action and Molecular Docking Evaluation of Novel Benzimidazole-Pyrazole Hybrids,” Chemistry Central Journal 11, no. 85 (2017): 1–13.
  • S. N. Baytas 1, N. Inceler, A. Yilmaz, A. Olgac, S. Menevse, E. Banoglu, E. Hamel, R. Bortolozzi, and G. Viola, “Synthesis, Biological Evaluation and Molecular Docking Studies of Trans-Indole-3-Acrylamide Derivatives, a New Class of Tubulin Polymerization Inhibitors,” Bioorganic and Medicinal Chemistry 22, no. 12 (2014): 3096–104.
  • A. V. Brenner, Z. Wang, R. A. Kleinerman, L. Wang, S. Zhang, C. Metayer, K. Chen, S. Lei, H. Cui, and J. H. Lubin, “Previous Pulmonary Diseases and Risk of Lung Cancer in Gansu Province, China,” International Journal of Epidemiology 30, no. 1 (2001): 118–24.
  • B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 4th ed. (Oxford, UK: Clarendon, 2007).
  • V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free Radicals, Antioxidants and Functional Foods: Impact on Human Health,” Pharmacognosy Reviews 4, no. 8 (2010): 118–26.
  • L. A. Pham-Huy, H. He, C. Pham-Huy, and Free. Radicals, “Antioxidants in Disease and Health,” International Journal of Biomedical Science 4, no. 2 (2008): 89–96.
  • G. Winters, N. DiMola, M. Berti, and V. Arioli, “Synthesis and Biological Activities of Some Indolo[2,3-c]Isoquinoline Derivatives,” Farmaco Sci 34, no. 6 (1979): 507–17. Chemistry Abstracts 91 (1979): 175235m.
  • Sumitomo Chemical Co. Ltd., “Jpn Kokai Tokkyo Koho, Jap.Pant. Indolo Isoquinolines 5869, 882 (8369, 882),” Chemistry Abstracts 99 (1983): 88182p.
  • T. Kosuge, H. Zenda, H. Tamamoto, and Y. Torigoe, “Harmans from Tar of Defatted Soybean,” Japan Kokai, Jap. Pat. 1973, 7391,210. Chemistry Abstracts (1978): 112616p.
  • P. Hoorocks, S. Fallon, L. Denman, O. Devine, L. J. Duffy, A. Harper, E. L. Meredith, P. S. Hasenkam, A. Sidaway, D. Monnery, et al. “Synthesis and Evaluation of a Novel Series of Indoloisoquinolines as Small Molecule Anti-Malarial Leads,” Bioorganic & Medicinal Chemistry Letters 22, no. 4 (2012): 1770.
  • S. Anelise, N. Formagio, L. T. D. Tonin, M. A. Foglio, C. Madjarof, J. E. de Carvalho, W. F. da Costa, F. P. Cardoso, and M. H. Sarragiotto, “Synthesis and Antitumoral Activity of Novel 3-(2-Substituted-1,3,4-Oxadiazol-5-yl) and 3-(5-Substituted-1,2,4-Triazol-3-yl) β-Carboline Derivatives,” Bioorganic and Medicinal Chemistry 16 (2008): 9660–67.
  • K. Ishizumi and J. Katsube, “Indolo Isoquinolines and Processes for Producing Them Brit. Pat, 2, 025, 932,” Chemistry Abstracts 93 (1980): 186322e.
  • A. R. Saundane, V. A. Vaijinath, and V. Katkar, “Synthesis, Antimicrobial and Antioxidant Activities of Some New 10-(10-Substituted 5H, 6H, 7H,-Indolo[2,3-c]Isoquinoline-5-Ylthio)Formyl-3′, 5′-Disubstituted Pyrazoles,-3′-Methylpyrazole-5′-Ones and-1′,3′,4′-Oxadiazole-2′-Thiones,” Heterocyclic Letters 2, no. 3 (2012): 333–48.
  • A. R. Saundane, V. A. Vaijinath, and V. Katkar, “Synthesis of Some New Indolo[2,3-c]Isoquinolinyl Pyrazoles,-1,3,4-Oxadizoles and Their Biological Activities,” Medicinal Chemistry Research 22, no. 8 (2013): 3787–93.
  • V. A. Vaijinath, “Synthesis, Antimicrobial, and Antioxidant Studies of Some New Indolo[3,2-c] Isoquinoline Derivatives,” Russian Journal of General Chemistry 88, no. 12 (2018): 2628–45.
  • V. A. Vaijinath and A. R. Saundane, “Synthesis of Some Novel 5-(8-Substituted-11h-Indolo[3,2-c]Isoquinolin-5-Ylthio)-1′,3′,4′-Oxadiazol-2-Amines Bearing Thiazolidinones and Azetidinones as Potential Antimicrobial, Antioxidant, Antituberculosis, and Anticancer Agents,” Polycyclic Aromatic Compounds (2019): 1628782.
  • V. A. Vaijinath, A. R. Saundane, S. M. Rajkumar, and R. V. Dushyanth, “Synthesis of Novel Indolo[3,2-c]Isoquinoline Derivatives Bearing Pyrimidine, Piperazine Rings and Their Biological Evaluation and Docking Studies against COVID-19 Virus Main Protease,” Journal of Molecular Structure 1229 (2021): 129829.
  • S. P. Hiremath, A. R. Saundane, and B. H. M. Mruthyunjayaswamy, “Synthesis of [10-Substituted 6H,7H-Indolo[2,3-c]Isoquinolin-5-One-6-yl]Acetyl-3,5-Disubstituted-Pyrazoles/Pyrazolones and 5-[10-Substituted 6H,7H-Indolo[2,3-c]Isoquinolin-5-One-6-yl]Methyl-1,3,4-Oxadiazol-2-Thiones,” Journal of the Indian Chemical Society 72, no. 10 (1995): 735–38.
  • B. Kapron, R. Czarnomysy, A. Paneth, M. Wujec, K. Bielawski, A. Bielawska, L. Swiatek, B. Rajtar, M. Polz-Dacewicz, and T. Plech, “Dual Antibacterial and Anticancer Activity of 4-Benzoyl-1-Dichlorobenzoylthiosemicarbazide Derivatives,” Anti-Cancer Agents in Medicinal Chemistry 18, no. 4 (2018): 529–40.
  • A. Paneth, P. Stączek, T. Plech, A. Strzelczyk, D. Janowska, J. Stefańska, K. Dzitko, M. Wujec, S. Kosiek, and P. Paneth, “Synthesis and Antibacterial Activity of 1,4-Dibenzoylthiosemicarbazide Derivatives,” Biomedicine & Pharmacotherapy 88 (2017): 1235–42.
  • M. Pitucha, Z. Karczmarzyk, M. Swatko-Ossor, W. Wysocki, M. Wos, K. Chudzik, G. Ginalska, and A. Fruzinski, “Synthesis, in Vitro Screening and Docking Studies of New Thiosemicarbazide Derivatives as Antitubercular Agent,” Molecules 24, no. 2 (2019): 251.
  • National Committee for Clinical Laboratory Standards (NCCLS), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M27-A (Villanova, PA: NCCLS, 1997).
  • National Committee for Clinical Laboratory Standards (NCCLS), Standard Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 2nd ed. Approved Standard M7-A2 (Villanova, PA: National Committee for Clinical Laboratory Standards, 1990).
  • National Committee for Clinical Laboratory Standards (NCCLS), Performance Standards for Antimicrobial Susceptibility Testing; Ninth Informational Supplement. M100-S9 (Villanova, PA: National Committee for Clinical Laboratory Standards, 1999).
  • P. Sharma, N. Rane, and V. K. Gurram, “Synthesis and QSAR Studies of Pyrimido[4,5-d]Pyrimidine-2,5-Dione Derivatives as Potential Antimicrobial Agents,” Bioorganic & Medicinal Chemistry Letters 1414, no. 16 (2004): 4185–90.
  • V. D. Warner, J. D. Musto, J. N. Sane, K. H. Kim, and G. L. Grunewald, “Quantitative Structure-Activity Relationships for 5-Substituted 8-Hydroxyquinolines as Inhibitors of Dental Plaque,” Journal of Medicinal Chemistry 20, no. 1 (1977): 92–96.
  • R.V. Goering, H. M. Dockrell, M. Zuckerman, P. L. Chiodini, and I. M. Roitt, The Bacteria. Mims's Medical Microbiology, 5th ed. (Elsevier: China, 2013), 7.
  • B. Mohamad Ali, B. Velavan, G. Sudhandiran, J. Sridevi, and A. Sultan Nasar, “Radical Dendrimers: Synthesis, anti-Tumor Activity and Enhanced Cytoprotective Performance of TEMPO Free Radical Functionalized Polyurethane Dendrimers,” European Polymer Journal 122, (2020): 109354.
  • P. Sharma, A. B. Jha, R. S. Dubey, and M. Pessarakli, “Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions,” Journal of botany (2012): 1-26.
  • B. Halliwell, “Reactive Oxygen Species and the Central Nervous System,” in Free Radicals in the Brain (Berlin, Heidelberg, Germany: Springer-Verlag, 1992).
  • T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, “Two New Flavonoids and Other Constituents in Licorice Root: their Relative Astringency and Radical Scavenging Effects,” Chem. Pharm. Bull. (Tokyo) 36, no. 6 (1988): 2090–97.
  • T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods65, no. 1–2 (1983): 55–63.
  • A. Schinkovitz, S. Gibbons, M. Stavri, M. J. Cocksedge, and F. Bucar, “Ostruthin: An Antimycobacterial Coumarin from the Roots of Peucedanum Ostruthium,” Planta Medica 69, no. 4 (2003): 369–71.
  • M. Kratky, J. Vinsova, E. Novotna, J. Mandikova, V. Wsol, F. Trejtnar, V. Ulmann, J. Stolarikova, S. Fernandes, S. Bhat, et al. “Salicylanilide Derivatives Block Mycobacterium tuberculosis through Inhibition of Isocitrate Lyase and Methionine Aminopeptidase,” Tuberculosi92 (2012): 434–39.
  • M. Asif and A. Kaur, “Mini Review on Diarylquinolone Compound Bedaquiline and Some Other Quinolone Derivatives and Their Antitubercular Activity,” Research Journal of Pharmacy and Technology 1 (2015): 1–11.
  • (a) A. Proekt and H. C. Hemmings Jr, Mechanisms of Drug Action. 2nd ed. (Amsterdam: Elsevier, 2019); (b) H. C. Hemmings Jr and T. D. Egan (eds), Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application, 2nd ed. (Amsterdam: Elsevier, 2018), 2–19.
  • K. Muthusamy, K. D. Singh, S. Chinnasamy, S. Nagamani, G. Krishnasamy, C. Thiyagarajan, P. Premkumar, and M. Anusuyadevi, “High Throughput Virtual Screening and e-Pharmacophore Filtering in the Discovery of New BACE-1 Inhibitors,” Interdisciplinary Sciences, Computational Life Sciences 5, no. 2 (2013): 119–26. s12539-013-0157-x.
  • P. Sneha, A. Tyagi, V. Jose, M. Jane, k Krishna, and M., C. Gopi, “Integration of Common Feature Pharmacophore Modeling and in Vitro Study to Identify Potent AChE Inhibitors,” Medicinal Chemistry Research 25, no. 10 (2016): 1007.
  • M. Ibrahim, and A. A. Mahmoud, “Computational Notes on the Reactivity of Some Functional Groups,” Journal of Computational and Theoretical Nanoscience 6 (2009): 1523–26.
  • K. Fukui, “Role of Frontier Orbitals in Chemical Reactions,” Science 218 (1982): 747–54.
  • A. Mahmood, T. Akram, and E. B. de Lima, “Syntheses, Spectroscopic Investigation and Electronic Properties of Two Sulfonamide Derivatives: A Combined Experimental and Quantum Chemical Approach,” Journal of Molecular Structure 1108 (2016): 496–507.
  • H. Zarrok, A. Zarrouk, R. Salghi, H. Oudda, B. Hammouti, M. Assouag, M. Taleb, M. Ebn. Touhami, M. Bouachrine, and S. Boukhris, “Gravimetric and Quantum Chemical Studies of 1-(4-Acetyl-2-(4-Chlorophenyl)Quinoxalin-1(4h)-y1) Acetone as Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Solution,” Journal of Chemical and Pharmaceutical Research 4 (2012): 5056–66.
  • H. R. Rangel, J. T. Ortega, M. L. Serrano, and F. H. Pujol, “Unrevealing Sequence and Structural Features of Novel Coronavirus Using In Silico Approaches: The Main Protease as Molecular Target,” EXCLI Journal 19 (2020): 400–09.
  • N. O. Obi-Egbedi, I. B. Obot1, M. I. El-Khaiary, S. A. Umoren, and E. E. Ebenso, “Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface,” International Journal of Electrochemical Science 6 (2011): 5649–75.
  • R. Hasanov, M. Sadıkoglu, and S. Bilgic, “Electrochemical and Quantum Chemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution,” Applied Surface Science 253 (2007): 3913–21.
  • N. Siamak, “Is There a Minimum Electrophilicity Principle in Chemical Reactions?,” Chinese Journal of Chemistry 25, no. 10 (2007): 1439–44.
  • R.G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.