143
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of New Biological Functionalized Tetra Pyrimidodipyrimidines and Tetra Barbituric Moiety Conation Ether Groups

, , &
Pages 102-114 | Received 21 Sep 2021, Accepted 11 Nov 2021, Published online: 02 Dec 2021

References

  • G. B. Kauffman, “Adolf Von Baeyer and the Naming of Barbituric Acid,” Journal of Chemical Education 57, no. 3 (1980): 222–23.
  • K. T. Mahmudov, M. N. Kopylovich, A. M. Maharramov, M. M. Kurbanova, A. V. Gurbanov, and A. J. Pombeiro, “Barbituric Acids as a Useful Tool for the Construction of Coordination and Supramolecular Compounds,” Coordination Chemistry Reviews 265 (2014): 1–37.
  • K. T. Mahmudov, M. F. C. G. da Silva, M. N. Kopylovich, A. R. Fernandes, A. Silva, A. Mizar, and A. J. Pombeiro, “Di-and Tri-Organotin (IV) Complexes of Arylhydrazones of Methylene Active Compounds and Their Antiproliferative Activity,” Journal of Organometallic Chemistry 760 (2014): 67–73.
  • R. P. Rodrigues, S. F. Andrade, S. P. Mantoani, V. L. Eifler-Lima, V. B. Silva, and D. F. Kawano, “Using Free Computational Resources to Illustrate the Drug Design Process in an Undergraduate Medicinal Chemistry Course,” Journal of Chemical Education 92, no. 5 (2015): 827–35.
  • M. A. Bigdeli, E. Sheikhhosseini, A. Habibi, and S. Balalaie, “An Experimental Study of Special Leaving Group Behavior in the Reaction of Arylidenebarbituric Acids with Carbon Nucleophiles,” Heterocycles 83, no. 1 (2011): 107–16.
  • M. Faryabi and E. Sheikhhosseini, “Efficient Synthesis of Novel Benzylidene Barbituric and Thiobarbituric Acid Derivatives Containing Ethyleneglycol Spacers,” Journal of the Iranian Chemical Society 12, no. 3 (2015): 427–32.
  • E. Sheikhhosseini, “Design and Effective Synthesis of Novel Furo[2,3-d] Pyrimidine Derivatives Containing Ethylene Ether Spacers,” Journal of Saudi Chemical Society 22, no. 3 (2018): 337–42.
  • W. Doran, “Barbituric Acid Hypnotics,” Medicinal Chemistry 4 (1959): 164–67.
  • J. Bojarski, J. L. Mokrosz, H. J. Bartoń, and M. H. Paluchowska, “Recent Progress in Barbituric Acid Chemistry,” Advances in Heterocyclic Chemistry 38 (1985): 229–97.
  • A. Barakat, M. S. Islam, A. M. Al-Majid, H. A. Ghabbour, S. Yousuf, M. Ashraf, N. N. Shaikh, M. I. Choudhary, R. Khalil, and Z. Ul-Haq, “Synthesis of Pyrimidine-2,4,6-Trione Derivatives: Anti-oxidant, Anti-cancer, α-glucosidase, β-Glucuronidase Inhibition and Their Molecular Docking Studies,” Bioorganic Chemistry 68 (2016): 72–79.
  • W. Chen, J. Feng, and H. Tu, “Synthesis and Antitumor Activities of Novel 2-Substituted Pyrimidinone-5-Carboxylic Acid Benzylamides,” Frontiers of Chemistry in China 2, no. 2 (2007): 127–30.
  • A. Barakat, H. J. Al-Najjar, A. M. Al-Majid, S. M. Soliman, Y. N. Mabkhot, H. A. Ghabbour, and H.-K. Fun, “Synthesis and Molecular Characterization of 5,5′-((2,4-Dichlorophenyl)Methylene) Bis(1,3-Dimethylpyrimidine-2,4,6(1H,3H,5H)-Trione),” Journal of Molecular Structure 1084 (2015): 207–15.
  • C. Uhlmann and W. Fröscher, “Low Risk of Development of Substance Dependence for Barbiturates and Clobazam Prescribed as Antiepileptic Drugs: results from a Questionnaire Study,” CNS Neuroscience & Therapeutics 15, no. 1 (2009): 24–31.
  • F. Grams, H. Brandstetter, S. D'Alò, D. Geppert, H. W. Krell, H. Leinert, V. Livi, E. Menta, A. Oliva, G. Zimmermann, et al. “ Pyrimidine-2,4,6-Triones: A New Effective and Selective Class of Matrix Metalloproteinase Inhibitors,” Biological Chemistry 382, no. 8 (2001): 1277–85.
  • E. Milanesi, P. Costantini, A. Gambalunga, R. Colonna, V. Petronilli, A. Cabrelle, G. Semenzato, A. M. Cesura, E. Pinard, and P. Bernardi, “The Mitochondrial Effects of Small Organic Ligands of BCL-2: Sensitization of BCL-2-Overexpressing Cells to Apoptosis by a Pyrimidine-2,4,6-Trione Derivative,” The Journal of Biological Chemistry 281, no. 15 (2006): 10066–72.
  • Q. Tang, G. Zhang, X. Du, W. Zhu, R. Li, H. Lin, P. Li, M. Cheng, P. Gong, and Y. Zhao, “Discovery of Novel 6,7-Disubstituted-4-Phenoxyquinoline Derivatives Bearing 5-(Aminomethylene)Pyrimidine-2,4,6-Trione Moiety as c-Met Kinase Inhibitors,” Bioorganic & Medicinal Chemistry 22, no. 4 (2014): 1236–49.
  • A. Barakat, S. M. Soliman, A. M. Al-Majid, G. Lotfy, H. A. Ghabbour, H.-K. Fun, S. Yousuf, M. I. Choudhary, and A. Wadood, “Synthesis and Structure Investigation of Novel Pyrimidine-2, 4, 6-Trione Derivatives of Highly Potential Biological Activity as Anti-Diabetic Agent,” Journal of Molecular Structure 1098 (2015): 365–76.
  • A. Barakat, M. Ali, A. M. Al-Majid, S. Yousuf, M. I. Choudhary, R. Khalil, and Z. Ul-Haq, “Synthesis of Thiobarbituric Acid Derivatives: In Vitro α-Glucosidase Inhibition and Molecular Docking Studies,” Bioorganic Chemistry 75 (2017): 99–105.
  • M. Mohsenimehr, M. Mamaghani, F. Shirini, M. Sheykhan, and F. A. Moghaddam, “One-Pot Synthesis of Novel Pyrido [2,3-d] Pyrimidines Using HAp-Encapsulated-γ-Fe2O3 Supported Sulfonic Acid Nanocatalyst under Solvent-Free Conditions,” Chinese Chemical Letters 25, no. 10 (2014): 1387–91.
  • L. Yang, D. Shi, S. Chen, H. Chai, D. Huang, Q. Zhang, and J. Li, “Microwave-Assisted Synthesis of 2,3-Dihydropyrido[2,3-d]Pyrimidin-4 (1 H)-Ones Catalyzed by DBU in Aqueous Medium,” Green Chemistry 14, no. 4 (2012): 945–51.
  • M. Dabiri, H. Arvin-Nezhad, H. R. Khavasi, and A. Bazgir, “A Novel and Efficient Synthesis of Pyrimido[4,5-d]Pyrimidine-2,4,7-Trione and Pyrido[2,3-d:6,5-d] Dipyrimidine-2,4,6,8-Tetrone Derivatives,” Tetrahedron 63, no. 8 (2007): 1770–74.
  • A. Bazgir, M. M. Khanaposhtani, R. Ghahremanzadeh, and A. A. Soorki, “A Clean, Three-Component and One-Pot Cyclo-Condensation to Pyrimidine-Fused Heterocycles,” Comptes Rendus Chimie 12, no. 12 (2009): 1287–95.
  • H. Saeidiroshan and L. Moradi, “Immobilization of Cu (II) on MWCNTs@ L-His as a New High Efficient Reusable Catalyst for the Synthesis of Pyrido[2,3-d:5,6-d′] Dipyrimidine Derivatives,” Journal of Organometallic Chemistry 893 (2019): 1–10.
  • Lucía Cordeu, Elena Cubedo, Eva Bandrés, Amaia Rebollo, Xabi Sáenz, Hector Chozas, Ma Victoria Domínguez, Mikel Echeverría, Beatriz Mendivil, Carmen Sanmartin, et al. “Biological Profile of New Apoptotic Agents Based on 2,4-Pyrido[2,3-d]Pyrimidine Derivatives,” Bioorganic & Medicinal Chemistry 15, no. 4 (2007): 1659–69.
  • A. Kohzadian and A. Zare, “Effective and Rapid Synthesis of Pyrido[2, 3-d:6,5-d′] Dipyrimidines Catalyzed by a Mesoporous Recoverable Silica-Based Nanomaterial,” Silicon 12, no. 6 (2020): 1407–15.
  • C. Verma, M. A. Quraishi, K. Kluza, M. Makowska-Janusik, L. O. Olasunkanmi, and E. E. Ebenso, “Corrosion Inhibition of Mild Steel in 1M HCl by D-Glucose Derivatives of Dihydropyrido [2,3-d:6,5-d′] Dipyrimidine-2,4,6,8(1H,3H,5H,7H)-Tetraone,” Scientific Reports 7, no. 1 (2017): 44432.
  • M. N. Nasr and M. M. Gineinah, “Pyrido[2,3‐d] Pyrimidines and Pyrimido[5′,4′:5,6]Pyrido[2,3‐d] Pyrimidines as New Antiviral Agents: synthesis and Biological Activity,” Archiv der Pharmazie 335, no. 6 (2002): 289–95.
  • T. Nagamatsu, H. Yamato, M. Ono, S. Takarada, and F. Yoneda, “Autorecycling Oxidation of Alcohols Catalysed by Pyridodipyrimidines as an NAD (P)+ Model,” Journal of the Chemical Society, Perkin Transactions 1 16, no. 16 (1992): 2101–09.
  • H. Naeimi, A. Didar, Z. Rashid, and Z. Zahraie, “Sonochemical Synthesis of Pyrido[2,3-d:6,5-d′]-Dipyrimidines Catalyzed by [HNMP] + [HSO4]- and Their Antimicrobial Activity Studies,” The Journal of Antibiotics 70, no. 7 (2017): 845–52.
  • P. M. Petersen, W. Wu, E. E. Fenlon, S. Kim, and S. C. Zimmerman, “Synthesis of Heterocycles Containing Two Cytosine or Two Guanine Base-Pairing Sites. Novel Tectons for Self-Assembly,” Bioorganic & Medicinal Chemistry 4, no. 7 (1996): 1107–12.
  • M. I. Choudhary and W. J. Thomsen, Bioassay Techniques for Drug Development (Taylor & Francis, 2001).
  • C. G. Silva, R. S. Herdeiro, C. J. Mathias, A. D. Panek, C. S. Silveira, V. P. Rodrigues, M. N. Rennó, D. Q. Falcão, D. M. Cerqueira, A. B. M. Minto, et al. “Evaluation of Antioxidant Activity of Brazilian Plants,” Pharmacological Research 52, no. 3 (2005): 229–33.
  • C. Alasalvar, M. Karamać, R. Amarowicz, and F. Shahidi, “Antioxidant and Antiradical Activities in Extracts of Hazelnut Kernel (Corylus avellana L.) and Hazelnut Green Leafy Cover,” Journal of Agricultural and Food Chemistry 54, no. 13 (2006): 4826–32.
  • P. Molyneux, “The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity,” Songklanakarin Journal of Science and Technology 26, no. 2 (2004): 211–19.
  • M. Korycka-Dahl and T. Richardson, “Photogeneration of Superoxide Anion in Serum of Bovine Milk and in Model Systems Containing Riboflavin and Amino Acids,” Journal of Dairy Science 61, no. 4 (1978): 400–07.
  • Hakan Ozer, Münevver Sökmen, Medine Güllüce, Ahmet Adigüzel, Fikrettin Sahin, Atalay Sökmen, Hamdullah Kiliç, and Ozlem Baris, “Chemical Composition and Antimicrobial and Antioxidant Activities of the Essential Oil and Methanol Extract of Hippomarathrum microcarpum (Bieb.) from Turkey,” Journal of Agricultural and Food Chemistry 55, no. 3 (2007): 937–42.
  • A. A. P. Almeida, A. Farah, D. A. Silva, E. A. Nunan, and M. B. A. Glória, “Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria,” Journal of Agricultural and Food Chemistry 54, no. 23 (2006): 8738–43.
  • H. Liu, D. Gu, G. Liu, X. Zhao, and C. Chen, “The Synthesis of Pentaerythrityl Tetraimdazole,” Procedia Engineering 18 (2011): 324–28.
  • M. Arumugam, A. Mitra, P. Jaisankar, S. Dasgupta, T. Sen, R. Gachhui, U. K. Mukhopadhyay, and J. Mukherjee, “Isolation of an Unusual Metabolite 2-Allyloxyphenol from a Marine Actinobacterium, Its Biological Activities and Applications,” Applied Microbiology and Biotechnology 86, no. 1 (2010): 109–17.
  • F. Liu, V. E. C. Ooi, and S. T. Chang, “Free Radical Scavenging Activities of Mushroom Polysaccharide Extracts,” Life Sciences 60, no. 10 (1997): 763–71.
  • Y. Mizushima and M. Kobayashi, “Interaction of Anti-Inflammatory Drugs with Serum Proteins, Especially with Some Biologically Active Proteins,” The Journal of Pharmacy and Pharmacology 20, no. 3 (1968): 169–73.
  • S. Sakat, A. R. Juvekar, and M. N. Gambhire, “In Vitro Antioxidant and anti-Inflammatory Activity of Methanol Extract of Oxalis corniculata Linn,” Journal of Pharmacy and Pharmaceutical Sciences 2, no. 1 (2010): 146–55.
  • L. B. Reller, M. Weinstein, J. H. Jorgensen, and M. J. Ferraro, “Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices,” Clinical Infectious Diseases 49, no. 11 (2009): 1749–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.