132
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Multicomponent Synthesis of Pyrano (3, 2-c) Quinolone Fused Spirochromenes

, &
Pages 384-395 | Received 30 Jun 2021, Accepted 26 Nov 2021, Published online: 14 Dec 2021

References

  • A. Strecker, “Ueber Die künstlicheBildung Der Milchsäure Und Einenneuen, demGlycocollhomologenKörper, Leibigs,” Justus Liebigs Annalen Der Chemie 7 (1850): 27–45.
  • J. Zhu and H. Bienayme, Multicomponent Reactions, eds. J. Zhu, and H. Bieayme (Wienheim, Germany: Wiley – VCH, 2005).
  • M. S. Singh, and S. Chowdhury, “Recent Developments in Solvent-Free Multicomponent Reactions: A Perfect Synergy for Eco-Compatible Organic Synthesis,” RSC Advances 2, no. 11 (2012): 4547–92.
  • B. H. Rotstein, S. Zaretsky, V. Rai, and A. K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114, no. 16 (2014): 8323–59.
  • E. Ruijter, and R. V. Orru, “Multicomponent Reactions - Opportunities for the Pharmaceutical Industry,” Drug Discovery Today:Technologies 10 (2013): 15–20.
  • J. E. Biggs-Houck, A. Younai, and J. T. Shaw, “Recent Advances in Multicomponent Reactions for Diversity-Oriented Synthesis,” Current Opinion in Chemical Biology 14, no. 3 (2010): 371–82.
  • S. Manohar, U. C. Rajesh, S. I. Khan, B. L. Tekwani, and D. S. Rawat, “Novel 4-Aminoquinoline-Pyrimidine Based Hybrids with Improved in Vitro and in Vivo Antimalarial Activity,” ACS Medicinal Chemistry Letters 3, no. 7 (2012): 555–9.
  • C. Viegas Jr., A. Danuello, V. daSilva Bolzani, V. E. J. Barreiro, and C. A. M. Fraga, “Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes,” Current Medicinal Chemistry 14 (2007): 1829–52.
  • I. A. Ibarra, A. Islas-Jacome, and E. González-Zamora, “Synthesis of Polyheterocycles via Multicomponent Reactions,” Organic & Biomolecular Chemistry 16, no. 9 (2018): 1402–18.
  • N. Sharma, D. Mohanakrishnan, A. Shard, A. Sharma, Saima, A. K. Sinha, and D. Sahal, “Stilbene–Chalcone Hybrids: design, Synthesis, and Evaluation as a New Class of Antimalarial Scaffolds That Trigger Cell Death through Stage Specific Apoptosis,” Journal of Medicinal Chemistry 55 (2012): 297–11.
  • F. W. Muregi, and A. Ishih, “Next-Generation Antimalarial Drugs: hybrid Molecules as a New Strategy in Drug Design,” Drug Development Research 71, no. 1 (2010): 20–32.
  • M. Decker, “Hybrid Molecules Incorporating Natural Products: applications in Cancer Therapy, Neurodegenerative Disorders and beyond,” Current Medicinal Chemistry 18, no. 10 (2011): 1464–75.
  • D. Sunil, and P. R. Kamath, “Multi-Target Directed Indole Based Hybrid Molecules in Cancer Therapy : An Up-To-Date Evidence-Based Review,” Current Topics in Medicinal Chemistry 17, no. 9 (2017): 959–85.
  • G. S. Singh, and Z. Y. Desta, “Isatins as Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks,” Chemical Reviews 112, no. 11 (2012): 6104–55.
  • A. H. Abdel-Rahman, E. M. Keshk, M. A. Hanna, and S. M. El-Bady, “Synthesis and Evaluation of Some New Spiro Indoline-Based Heterocycles as Potentially Active Antimicrobial Agents,” Bioorganic & Medicinal Chemistry 12, no. 9 (2004): 2483–8.
  • A. Dandia, D. Saini, S. Bhaskaran, and D. K. Saini, “Ultrasound Promoted Green Synthesis of Spiro [Pyrano(2, 3- c) Pyrazoles] as Antioxidant Agents,” Medicinal Chemistry Research 23, no. 2 (2014): 725–34.
  • J. Liu, Y. Song, X. Zhang, X. Liang, Y. Wu, Y. Wang, and X. Jiang, “Spirooxindoles, a Potential Class of anti-Inflammatory Agents,” Inflammation and Cell Signaling 1 (2014): 374–8.
  • V. V. Vintonyak, K. Warburg, H. Kruse, S. Grimme, K. Hubel, D. Rauh, and H. Waldmann, “Identification of Thiazolidinones Spiro-Fused to Indolin-2-Ones as Potent and Selective Inhibitors of the Mycobacterium tuberculosis Protein Tyrosine Phosphatase B,” Angewandte Chemie (International ed. in English) 49, no. 34 (2010): 5902–5.
  • B. Yu, D. Q. Yu, and H. M. Liu, “Spirooxindoles: Promising Scaffolds for Anticancer Agents,” European Journal of Medicinal Chemistry 97 (2015): 673–98.
  • B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo, R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber, P. S. Andersons andR, and S. Chang, “Rhodium(II) Acetate-Catalyzed Stereoselective Synthesis, SAR and anti-HIV Activity of Novel Oxindoles Bearing Cyclopropane Ring,” European Journal of Medicinal Chemistry 46 (2011): 1181–8.
  • Tetyana L. Pavlovska, Ruslan Gr Redkin, Victoria V. Lipson, and Dmytro V. Atamanuk, “Molecular Diversity of Spirooxindoles. Synthesis and Biological Activity,” Molecular Diversity 20, no. 1 (2016): 299–44.
  • M. M. M. Santos, “Recent Advances in the Synthesis of Biologically Active Spirooxindoles,” Tetrahedron 70, no. 52 (2014): 9735–57. and references cited therein.
  • S. Zhu, J. Wang, Z. Xu, and J. Li, “An Efficient One-Pot Synthesis of Pyrano[3,2-c]Quinolin-2,5-Dione Derivatives Catalyzed by L-Proline,” Molecules (Basel, Switzerland) 17, no. 12 (2012): 13856–63.
  • M.-J. Yao, Z. Guan, and Y.-H. He, “Simple, Catalyst-Free, One-Pot Procedure for the Synthesis of 2-Amino-3-Cyano-1,4,5,6-Tetrahydropyrano[3,2-c]Quinolin-5-One Derivatives,” Synthetic Communications 43, no. 15 (2013): 2073–8.
  • I. V. Magedov, M. Manpadi, M. A. Ogasawara, A. S. Dhawan, S. Rogelj, S. Van Slambrouck, W. F. A. Steelant, N. M. Evdokimov, P. Y. Uglinskii, E. M. Elias, et al. “Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 2. Antiproliferative and Antitubulin Activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones,” Journal of Medicinal Chemistry 51, no. 8 (2008): 2561–70.
  • K. S. Atwal, J. R. McCullough, A. Hedberg, M. L. Conder, S. Z. Ahmed, G. Cucinotta, and D. E. Normandin, “The Discovery of a Novel Calcium Channel Blocker Related to the Structure of Potassium Channel Opener Cromakalim,” Bioorganic & Medicinal Chemistry Letters 2, no. 12 (1992): 1475–8.
  • S. T. Hilton, T. C. T. Ho, G. Pljevaljcic, and K. Jones, “A New Route to Spirooxindoles,” Organic Letters 2, no. 17 (2000): 2639–41.
  • A. A. Aly, E. M. El-Sheref, A.-F E. Mourad, A. B. Brown, S. Brase, M. E. M. Bakheet, and M. Nieger, “Synthesis of Spiro[Indoline-3,4′-Pyrano[3,2-c]Quinolone]-3′-Carbonitriles,” Monatshefte Für Chemie - Chemical Monthly 149, no. 3 (2018): 635–44. 149,
  • M. A. Nasseri, and S. M. Sadeghzadeh, “A Highly Active FeNi3-SiO2 Magnetic Nanoparticles Catalyst for the Preparation of 4H-Benzo[b]Pyrans and Spirooxindoles under Mild Conditions,” Journal of the Iranian Chemical Society 10, no. 5 (2013): 1047–56.
  • S. S. Khot, P. V. Anbhule, U. V. Desai, and P. P. Wadgaonkar, “Tris-Hydroxymethyl-Aminomethane (THAM) as an Efficient Organocatalyst in Diversity Oriented and Environmentally Benign Synthesis of Spirochromenes,” Comptes Rendus Chimie 21, no. 9 (2018): 814–21.
  • L. Han, X. Hu, and Z. Zhou, “Diammonium Hydrogen Phosphate as a Recyclable Catalyst for the Rapid and Green Synthesis of 2-Amino-1,4,5,6-Tetrahydropyrano[3,2-c]-Quinolin-5-One Derivatives,” Polycyclic Aromatic Compounds 37, no. 1 (2017): 73–80.
  • R. L. L. de Compadre, R. A. Pearlstein, A. J. Hopfinger, and J. K. Seyde, “A Quantitative Structure-Activity Relationship Analysis of Some 4-Aminodiphenyl Sulfone Antibacterial Agents Using Linear Free Energy and Molecular Modeling Methods,” Journal of Medicinal Chemistry 30, no. 5 (1987): 900–6.
  • Z. Y. Sun, E. Botros, A. D. Su, Y. Kim, E. Wang, N. Z. Baturay, and C. H. Kwon, “ Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins ,” Journal of Medicinal Chemistry 43, no. 22 (2000): 4160–8.
  • M. Artico, R. Silvestri, E. Pagnozzi, B. Bruno, E. Novellino, G. Greco, S. Massa, A. Ettorre, A. G. Loi, F. Scintu, et al. “Structure-Based Design, Synthesis, and Biological Evaluation of Novel Pyrrolyl Aryl Sulfones: HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors Active at Nanomolar Concentrations,” Journal of Medicinal Chemistry 43, no. 9 (2000): 1886–91.
  • M. Teall, P. Oakley, T. Harrison, D. Shaw, E. Kay, J. Elliott, U. Gerhard, J. L. Castro, M. Shearman, R. G. Ball, et al. “Aryl Sulfones: A New Class of Gamma-Secretase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 15, no. 10 (2005): 2685–92.
  • D. C. Meadows, T. Sanchez, N. Neamati, T. W. North, and J. Gervay-Hague, “Ring Substituent Effects on Biological Activity of Vinyl Sulfones as Inhibitors of HIV-1,” Bioorganic & Medicinal Chemistry 15, no. 2 (2007): 1127–37.
  • S. S. Jin, H. Wang, and H. Y. Guo, “Ionic Liquid Catalyzed One-Pot Synthesis of Novel Spiro-2-Amino-3-Phenylsulfonyl-4H-Pyran Derivatives,” Tetrahedron Letters 54, no. 19 (2013): 2353–6.
  • A. S. Al-Bogami, “One-Pot, Three Component Synthesis of Novel Pyrano [3 2-c] Coumarins Containing Sulfone Moiety Utilizing Ultrasonic Irradiation as Eco-Friendly Energy Source,” Research on Chemical Intermediates 41, no. 1 (2015): 93–104.
  • K. S. Pandit, R. V. Kupwade, P. V. Chavan, U. V. Desai, P. P. Wadgaonkar, and K. M. Kodam, “Problem Solving and Environmentally Benign Approach toward Diversity Oriented Synthesis of Novel 2-Amino-3-Phenyl (or Alkyl) Sulfonyl-4H-Chromenes at Ambient Temperature,” ACS Sustainable Chemistry & Engineering 4, no. 6 (2016): 3450–64.
  • K. S. Pandit, P. V. Chavan, M. A. Kulkarni, U. V. Desai, and P. P. Wadgaonkar, “Tris-Hydroxymethylaminomethane (THAM): a Novel Organocatalyst for a Environmentally Benign Synthesis of Medicinally Important Tetrahydrobenzo[b]Pyrans and Pyran-Annulated Heterocycles,” New Journal of Chemistry 39, no. 6 (2015): 4452–68.
  • M. A. Kulkarni, V. R. Pandurangi, U. V. Desai, and P. P. Wadgaonkar, “A Practical and Highly Efficient Protocol for Multicomponent Synthesis of β-Phosphonomalononitriles and 2-Amino-4H-Chromen-4-yl-Phosphonates Using Diethylamine as a Novel Organocatalyst,” Comptes Rendus Chimie 15, no. 9 (2012): 745–52.
  • M. A. Kulkarni, K. S. Pandit, U. V. Desai, U. P. Lad, and P. P. Wadgaonkar, “Diethylamine: A Smart Organocatalyst in Eco-Safe and Diastereoselective Synthesis of Medicinally Privileged 2-Amino-4H-Chromenes at Ambient Temperature,” Comptes Rendus Chimie 16, no. 8 (2013): 689–95.
  • J. J. Li, Name Reactions for Carbocyclic Ring Formation (Hoboken, New Jersey: John Wiley & Sons, 2010), ISBN: 9780470085066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.