118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In Vitro Study of the Effect of 2,6-Substituents at the New 4-Ethoxy-Phenols as Antioxidants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 790-800 | Received 21 Apr 2021, Accepted 07 Dec 2021, Published online: 27 Dec 2021

References

  • Domenico Fusco, Giuseppe Colloca, Maria Rita Lo Monaco, and M. Cesari, “Effects of Antioxidant Supplementation on the Aging Process,” Clinical Interventions in Aging 2, no. 3 (2007): 377–87.
  • M. A. Al-Omar, C. Beedham, and I. A. Alsarra, “Pathological Roles of Reactive Oxygen Species and Their Defence Mechanisms,” Saudi Pharmaceutical Journal 12 (2004):1–18.
  • L. A. Pham-Huy, H. He, and C. Pham-Huy, “Free Radicals, Antioxidants in Disease and Health,” International Journal of Biomedical Science 4, no. 2 (2008):89–96.
  • K. Bagchi, and S. Puri, “Free Radicals and Antioxidants in Health and Disease,” Eastern Mediterranean Health Journal 4, no. 2 (1998):350–60.
  • J. W. Hilton, “Antioxidants: function, Types and Necessity of Inclusion in Pet Foods,” Canadian Veterinary Journal 30 (1989): 682–4.
  • Nataly A. Santos, Sarah S. Damasceno, Pedro H. M. de Araújo, Verônica C. Marques, Raul Rosenhaim, Valter J. Fernandes, Neide Queiroz, Ieda M. G. Santos, Ary S. Maia, and A. G. Souza, “Caffeic Acid: An Efficient Antioxidant for Soybean Biodiesel Contaminated with Metals,” Energy & Fuels 25, no. 9 (2011): 4190–4.
  • Sarah S. Damasceno, Nataly A. Santos, Ieda M. G. Santos, Antônia L. Souza, Antônio G. Souza, and Neide Queiroz, “Caffeic and Ferulic Acids: An Investigation of the Effect of Antioxidants on the Stability of Soybean Biodiesel during Storage,” Fuel 107 (2013): 641–6.
  • M. G. L. Hertog, E. J. M. Feskens, D. Kromhout, M. G. L. Hertog, P. C. H. Hollman, M. G. L. Hertog, and M. B. Katan, “Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study,” Lancet (London, England) 342, no. 8878 (1993): 1007–11.
  • Richtier Gonçalves da Cruz, Laurent Beney, Patrick Gervais, Simone Possedente de Lira, Thais Maria Ferreira de Souza Vieira, and Sebastien Dupont, “Comparison of the Antioxidant Property of Acerola Extracts with Synthetic Antioxidants Using an in Vivo Method With Yeasts,” Food Chemistry 277 (2019): 698–705.
  • Wageeh A. Yehye, Noorsaadah Abdul Rahman, Azhar Ariffin, Sharifah Bee Abd Hamid, Abeer A. Alhadi, Farkaad A. Kadir, and Marzieh Yaeghoobi, “Understanding the Chemistry behind the Antioxidant Activities of Butylated Hydroxytoluene (BHT): A Review,” European Journal of Medicinal Chemistry 101 (2015): 295–312.
  • J. Wang, C. Liu, X. Liu, L. Shao, and X.-M. Zhang, “C―H···O Hydrogen Bonding Interactions for Sterically Hindered Phenols and Their Phenoxyl Radicals,” Journal of Physical Organic Chemistry. 32 (2019): e3927.
  • L. Bravo, “Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance,” Nutrition Reviews 56, no. 11 (1998): 317–33.
  • Y.-T. Tung, J.-H. Wu, Y.-H. Kuo, and S.-T. Chang, “Antioxidant Activities of Natural Phenolic Compounds from Acacia Confusa Bark,” Bioresource Technology 98, no. 5 (2007): 1120–3.
  • M. H. Ahmad, et al. “Design and Synthesis of Sulfur-Containing Butylated Hydroxytoluene: antioxidant Potency and Selective Anticancer Agent,” Journal of Chemical Sciences 131 (2019): 107.
  • Yun Zhang, Bibai Du, Jiali Ge, Liangying Liu, Mingshan Zhu, Juan Li, and Lixi Zeng, “Co-Occurrence of and Infant Exposure to Multiple Common and Unusual Phenolic Antioxidants in Human Breast Milk,” Environmental Science & Technology Letters 7, no. 3 (2020): 206–12.
  • Sepideh Sharif, Michael J. Rodriguez, Yu Lu, Michael E. Kopach, David Mitchell, Howard N. Hunter, and M. G. Organ, “Sodium Butylated Hydroxytoluene (NaBHT) as a New and Efficient Hydride Source for Pd-Catalysed Reduction Reactions,” Chemistry (Weinheim an Der Bergstrasse, Germany) 25, no. 57 (2019): 13099–103.
  • C. L. Higgins, S. V. Filip, A. Afsar, and W. Hayes, “Evaluation of Thermal and Oxidative Stability of Three Generations of Phenolic Based Novel Dendritic Fuel and Lubricant Additives,” Reactive and Functional Polymers 142 (2019): 119–27.
  • J. C. M. Barreira, and I. C. F. R. Ferreira, “Artificial Antioxidants.” In Encyclopedia of Food Chemistry, edited by L. Melton, F. Shahidi, and P. Varelis, 283–90. Academic Press, 2019.
  • T. Kajiyama, and Y. Ohkatsu, “Effect of Para-Substituents of Phenolic Antioxidants,” Polymer Degradation and Stability 71, no. 3 (2001): 445–52.
  • Wageeh A. Yehye, Noorsaadah Abdul Rahman, Abeer A. Alhadi, Hamid Khaledi, Ng Seik Weng, and Azhar Ariffin, “Butylated Hydroxytoluene Analogs: Synthesis and Evaluation of Their Multipotent Antioxidant Activities,” Molecules (Basel, Switzerland) 17, no. 7 (2012): 7645–65.
  • Choon Young Lee, Charles Anamoah, Julius Semenya, Kelli N. Chapman, Allison N. Knoll, Hannah F. Brinkman, James I. Malone, and A. Sharma, “Electronic (Donating or Withdrawing) Effects of Ortho-Phenolic Substituents in Dendritic Antioxidants,” Tetrahedron Letters. 61, no. 11 (2020): 151607.
  • Choon Young Lee, Ajit Sharma, Julius Semenya, Charles Anamoah, Kelli N. Chapman, and Veronica Barone, “Computational Study of Ortho-Substituent Effects on Antioxidant Activities of Phenolic Dendritic Antioxidants,” Antioxidants 9, no. 3 (2020): 189.
  • M. Michalík, P. Poliak, V. Lukeš, and E. Klein, “From Phenols to Quinones: Thermodynamics of Radical Scavenging Activity of Para-Substituted Phenols,” Phytochemistry 166 (2019): 112077.
  • L. Wang, F. Yang, X. Zhao, and Y. Li, “Effects of Nitro- and Amino-Group on the Antioxidant Activity of Genistein: A Theoretical Study,” Food Chemistry 275 (2019): 339–45.
  • Julio López, Fabiola N. De La Cruz, María Inés Flores-Conde, Marcos Flores-Álamo, Francisco Delgado, Joaquín Tamariz, and M. A. Vázquez, “Regioselective Multicomponent Synthesis of 2,4,6-Trisubstituted Phenols from Fischer Alkynyl Carbene Complexes,” European Journal of Organic Chemistry 2016, no. 7 (2016): 1314–23.
  • M. Oyaizu, “Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine,” The Japanese Journal of Nutrition and Dietetics 44, no. 6 (1986): 307–15.
  • W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a Free Radical Method to Evaluate Antioxidant Activity,” LWT - Food Science and Technology 28, no. 1 (1995): 25–30.
  • M. Singhal, A. Paul, and H. P. Singh, “Synthesis and Reducing Power Assay of Methyl Semicarbazone Derivatives,” Journal of Saudi Chemical Society 18, no. 2 (2014): 121–7.
  • J. L. Sebaugh, “Guidelines for Accurate EC50/IC50 Estimation,” Pharmaceutical Statistics 10, no. 2 (2011): 128–34.
  • Tomoko Shimamura, Yoshihiro Sumikura, Takeshi Yamazaki, Atsuko Tada, Takehiro Kashiwagi, Hiroya Ishikawa, Toshiro Matsui, Naoki Sugimoto, Hiroshi Akiyama, Hiroyuki Ukeda, et al. “Applicability of the DPPH Assay for Evaluating the Antioxidant Capacity of Food Additives - Inter-Laboratory Evaluation Study,” Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 30, no. 7 (2014): 717–21.
  • Gutiérrez Pulido, H. & de la Vara Salazar, R. Análisis y Diseño de Experimentos. Ciudad de México, México: McGraw-Hill Interamericana, 2008.
  • I. Pinchuk, H. Shoval, Y. Dotan, and D. Lichtenberg, “Evaluation of Antioxidants: Scope, Limitations and Relevance of Assays,” Chemistry and Physics of Lipids 165, no. 6 (2012): 638–47.
  • Z. Bedlovičová, I. Strapáč, M. Baláž, and A. Salayová, “A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles,” Molecules 25, no. 14 (2020): 3191.
  • V. Roginsky and E. A. Lissi, “Review of Methods to Determine Chain-Breaking Antioxidant Activity in Food,” Food Chemistry 92, no. 2 (2005): 235–54.
  • I. Gülçin, M. Elmastaş, and H. Y. Aboul-Enein, “Determination of Antioxidant and Radical Scavenging Activity of Basil (Ocimum Basilicum L. Family Lamiaceae) Assayed by Different Methodologies,” Phytotherapy Research 21, no. 4 (2007): 354–61.
  • P. Molyneux, “The Use of the Stable Free Radical Diphenylpicryl-Hydrazyl (DPPH) for Estimating anti-Oxidant Activity,” Songklanakarin Journal of Science Technology 26 (2004): 211–9.
  • N. J. Miller, C. Rice-Evans, M. Davies, V. Gopinathan, and A. Milner, “A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates,” Clinical Science (London, England : 1979) 84, no. 4 (1993): 407–12.
  • N. Nenadis and M. Z. Tsimidou, “Assessing the Activity of Natural Food Antioxidants.” In Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 332–67. Cambridge, UK: Woodhead Publishing Limited, 2010.
  • D. Huang, B. Ou, and R. L. Prior, “The Chemistry Behind Antioxidant Capacity Assays,” Journal of Agricultural and Food Chemistry 53, no. 6 (2005): 1841–56.
  • R. L. Prior and G. Cao, “In Vivo Total Antioxidant Capacity: Comparison of Different Analytical Methods,” Free Radical Biology and Medicine 27, no. 11/12 (1999): 1173–81.
  • Andrzej L. Dawidowicz, Małgorzata Olszowy, and Małgorzata Jóźwik-Dolęba, “Antagonistic Antioxidant Effect in Butylated Hydroxytoluene/Butylated Hydroxyanisole Mixture,” Journal of Food Processing and Preservation 39, no. 6 (2015): 2240–8.
  • E. C. Horswill and K. U. Ingold, “The Oxidation of Phenols: II. The Oxidation of 2,4-di- t -Butylphenol with Peroxy Radicals,” Canadian Journal of Chemistry 44, no. 3 (1966): 269–77.
  • L. R. C. Barclay and M. R. Vinqvist, “Phenols as Antioxidants,” In The Chemistry of Phenols, edited by Z. Rappoport, 839–908. Chichester, UK: John Wiley & Sons, Ltd, 2003.
  • H. M. Ali and I. H. Ali, “A DFT and QSAR Study of the Role of Hydroxyl Group, Charge and Unpaired-Electron Distribution in Anthocyanidin Radical Stabilization and Antioxidant Activity,” Medicinal Chemistry Research 26, no. 10 (2017): 2666–74.
  • M. Walker, A. J. A. Harvey, A. Sen, and C. E. H. Dessent, “Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions,” The Journal of Physical Chemistry. A 117, no. 47 (2013): 12590–600.
  • T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, “Efficient Diffuse Function‐Augmented Basis Sets for Anion Calculations. III. The 3‐21 + G Basis Set for First‐Row Elements, Li–F,” Journal of Computational Chemistry 4, no. 3 (1983): 294–301.
  • J. Tomasi, B. Mennucci, and R. Cammi, “Quantum Mechanical Continuum Solvation Models,” Chemical Reviews 105, no. 8 (2005): 2999–3094.
  • Frisch, M. J. Gaussian 09, Revision B.01 (Wallingford, CT: Gaussian, Inc., 2009).
  • E. C. Horswill, and K. U. Ingold, “The Oxidation of Phenols: I. The Oxidation of 2,6-di- t -Butyl-4-Methylphenol, 2,6-di- t -Butylphenol, and 2,6-Dimethylphenol With Peroxy Radicals,” Canadian Journal of Chemistry 44, no. 3 (1966): 263–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.