192
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Microwave-Assisted Beckman Rearrangement by Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-Catalyst Under Solvent-Free Conditions

&
Pages 740-754 | Received 12 Oct 2021, Accepted 05 Dec 2021, Published online: 24 Dec 2021

References

  • E. Horning, V. Stromberg, and H. Lloyd, “Beckmann Rearrangements. An Investigation of Special Cases,” Journal of the American Chemical Society 74, no. 20 (1952): 5153–5.
  • K. Kaur and S. Srivastava, “Beckmann Rearrangement Catalysis: A Review of Recent Advances,” New Journal of Chemistry 44, no. 43 (2020): 18530–72.
  • H. J. Kiely-Collins, I. Sechi, P. E. Brennan, and M. G. McLaughlin, “Mild, Calcium Catalysed Beckmann Rearrangements,” Chemical Communications (Cambridge, England) 54, no. 6 (2018): 654–7.
  • D. Li, D. Mao, J. Li, Y. Zhou, and J. Wang, “In Situ Functionalized Sulfonic Copolymer toward Recyclable Heterogeneous Catalyst for Efficient Beckmann Rearrangement of Cyclohexanone Oxime,” Applied Catalysis A: General 510 (2016): 125–33.
  • A. Chang, H. M. Hsiao, T. H. Chen, M. W. Chu, and C. M. Yang, “Hierarchical Silicalite-1 Octahedra Comprising Highly-Branched Orthogonally-Stacked Nanoplates as Efficient Catalysts for Vapor-Phase Beckmann Rearrangement,” Chemical Communications (Cambridge, England) 52, no. no. 80 (2016) : 11939–42.
  • Y. Chu, G. Li, L. Huang, X. Yi, H. Xia, A. Zheng, and F. Deng, “External or Internal Surface of H-ZSM-5 Zeolite, Which is More Effective for the Beckmann Rearrangement Reaction?” Catalysis Science & Technology 7, no. 12 (2017) : 2512–23.
  • X. Mo, T. D. Morgan, H. T. Ang, and D. G. Hall, “Scope and Mechanism of a True Organocatalytic Beckmann Rearrangement with a Boronic Acid/Perfluoropinacol System under Ambient Conditions,” Journal of the American Chemical Society 140no. no. 15 (2018) : 5264–71.
  • Z.-F. Xu, T. Zhang, and W. Hong, “o-Phthalic Anhydride/Zn (OTf)2 co-Catalyzed Beckmann Rearrangement under Mild Conditions,” Tetrahedron 75, no. 23 (2019) : 3113–7.
  • C. L. Allen, and J. M. Williams, “Metal-Catalysed Approaches to Amide Bond Formation,” Chemical Society Reviews 40, no. 7 (2011): 3405–15.
  • Y. M. Liu, L. He, M. M. Wang, Y. Cao, H. Y. He, and K. N. Fan, “A General and Efficient Heterogeneous Gold-Catalyzed Hydration of Nitriles in Neat Water Under Mild Atmospheric Conditions,” Chemsuschem. 5no. no. 8 (2012) : 1392–6.
  • S. K. Sharma, S. D. Bishopp, C. L. Allen, R. Lawrence, M. J. Bamford, A. A. Lapkin, P. Plucinski, R. J. Watson, and J. M. Williams, “Copper-Catalyzed Rearrangement of Oximes into Primary Amides,” Tetrahedron Letters 52no. no. 33 (2011) : 4252–5.
  • D. Antoniak, A. Sakowicz, R. Loska, and M. Mąkosza, “Direct Conversion of Aromatic Aldehydes into Benzamides Via Oxidation with Potassium Permanganate in Liquid Ammonia,” Synlett 26, no. 1 (2014): 84–6.
  • N. C. Ganguly, S. Roy, and P. Mondal, “An Efficient Copper(II)-Catalyzed Direct Access to Primary Amides from Aldehydes under Neat Conditions,” Tetrahedron Letters 53, no. 11 (2012) : 1413–6.
  • M. A. Schade, G. Manolikakes, and P. Knochel, “Preparation of Primary Amides from Functionalized Organozinc Halides,” Organic Letters 12, no. 16 (2010) : 3648–50.
  • H. Sharghi, and M. H. Sarvari, “A Direct Synthesis of Nitriles and Amides from Aldehydes Using Dry or Wet Alumina in Solvent Free Conditions,” Tetrahedron 58, no. 52 (2002): 10323–8. no. 2002):
  • S. C. Ghosh, J. S. Ngiam, A. M. Seayad, D. T. Tuan, C. L. Chai, and A. Chen, “Copper-Catalyzed Oxidative Amidation of Aldehydes with Amine Salts: Synthesis of Primary, Secondary, and Tertiary Amides,” The Journal of Organic Chemistry 77, no. 18 (2012): 8007–15.
  • S. Park, Y. A. Choi, H. Han, S. H. Yang, and S. Chang, “Rh-Catalyzed One-Pot and Practical Transformation of Aldoximes to Amides,”Chemical Communications 15, no. 15 (2003): 1936–7.
  • Y. Ito, H. Hosomi, and S. Ohba, “Compelled Orientational Control of the Solid-State Photodimerization of Trans-Cinnamamides: dicarboxylic Acid as a Non-Covalent Linker,” Tetrahedron 56, no. 36 (2000): 6833–44.
  • H. Sharghi, and M. Hosseini, “Solvent-Free and One-Step Beckmann Rearrangement of Ketones and Aldehydes by Zinc Oxide,” Synthesis 2002, no. 8 (2002): 1057–60. no. 2002):
  • Z. Ghadamyari, A. Khojastehnezhad, S. M. Seyedi, and A. Shiri, “Co(II)‐Porphyrin Immobilized on Graphene Oxide: An Efficient Catalyst for the Beckmann Rearrangement,” ChemistrySelect 4, no. no. 36 (2019): 10920–7.
  • A. S. Hamed, and E. M. Ali, “Cu(II)–Metformin Immobilized on Graphene Oxide: An Efficient and Recyclable Catalyst for the Beckmann Rearrangement,” Research on Chemical Intermediates 46, no. 1 (2020): 701–14.
  • S. Roy, T. Chatterjee, M. Pramanik, A. S. Roy, A. Bhaumik, and S. M. Islam, “Cu(II)-Anchored Functionalized Mesoporous SBA-15: An Efficient and Recyclable Catalyst for the One-Pot Click Reaction in Water,” Journal of Molecular Catalysis A: Chemical 386 (2014): 78–85.
  • S. Asthana, C. Samanta, A. Bhaumik, B. Banerjee, R. K. Voolapalli, and B. Saha, “Direct Synthesis of Dimethyl Ether from Syngas over Cu-Based Catalysts: Enhanced Selectivity in the Presence of MgO,” Journal of Catalysis 334 (2016): 89–101.
  • P. Bhanja, S. K. Das, A. K. Patra, and A. Bhaumik, “Functionalized Graphene Oxide as an Efficient Adsorbent for CO2 Capture and Support for Heterogeneous Catalysis,” RSC Advances 6, no. 76 (2016): 72055–68.
  • D. A. Tomalia, “Birth of a New Macromolecular Architecture: dendrimers as Quantized Building Blocks for Nanoscale Synthetic Organic Chemistry,” Aldrichimica Acta 37, no. 2 (2004): 39–57.
  • H. Patel and P. Patel, “Dendrimer Applications–a Review,” International Journal of Pharma and Bio Sciences 4, no. 2 (2013): 454–63.
  • M. Mollazade, K. Nejati-Koshki, A. Akbarzadeh, N. Zarghami, M. Nasiri, R. Jahanban-Esfahlan, and A. Alibakhshi, “PAMAM Dendrimers Augment Inhibitory Effects of Curcumin on Cancer Cell Proliferation: possible Inhibition of Telomerase,” Asian Pacific Journal of Cancer Prevention : APJCP 14, no. 11 (2013): 6925–8.
  • S. Mignani, S. El. Kazzouli, M. Bousmina, and J.-P. Majoral, “Expand Classical Drug Administration Ways by Emerging Routes Using Dendrimer Drug Delivery Systems: A Concise Overview,” Advanced Drug Delivery Reviews 65, no. 10 (2013): 1316–30.
  • D. Wang, and D. Astruc, “Dendritic Catalysis—Basic Concepts and Recent Trends,” Coordination Chemistry Reviews 257, no. 15/16 (2013): 2317–34.
  • D. Saberi, H. Hashemi, N. Ghanaatzadeh, M. Moghadam, and K. Niknam, “Ruthenium/Dendrimer Complex Immobilized on Silica‐Functionalized Magnetite Nanoparticles Catalyzed Oxidation of Stilbenes to Benzil Derivatives at Room Temperature,” Applied Organometallic Chemistry 34, no. 4 (2020): e5563.
  • C. Köllner, B. Pugin, and A. Togni, “Dendrimers Containing Chiral Ferrocenyl Diphosphine Ligands for Asymmetric Catalysis,” Journal of the American Chemical Society 120, no. 39 (1998): 10274–5.
  • J. N. Reek, S. Arevalo, R. van Heerbeek, P. C. Kamer, and P. W. Van Leeuwen, “Dendrimers in Catalysis,” Advances in Catalysis 49 (2006): 71–151.
  • H. Zeng, G. R. Newkome, and C. L. Hill, “Poly (Polyoxometalate) Dendrimers: molecular Prototypes of New Catalytic Materials,” Angewandte Chemie 112, no. 10 (2000): 1841–4.
  • F. Afsharnadery, K. Khosravi, and M. A. Zolfigol, “A Novel Magnetically Recyclable Semi‐Dendrimer Catalyst‐Based Ethanolpyridole Supported on Ferrite Nanoparticles (HNPs@ Py) for the Synthesis of Biscoumarin and Dihydropyrano [3, 2‐c] Chromene Derivatives,”Applied Organometallic Chemistry 35, no. 8 (2021): e6297.
  • B. Maleki, F. Taheri, R. Tayebee, and F. Adibian, “Dendrimer-Functionalized Magnetic Graphene Oxide for Knoevenagel Condensation,” Organic Preparations and Procedures International 53, no. 3 (2021) : 284–90.
  • K. Lakshmi, and R. Rangasamy, “Synthesis of Au Nanoparticles Using Magnetite Cored Polyamine Dendrimer Template and Its Green Catalysis for Selective Oxidation of Alcohol,” Materials Letters (2021): 130257.
  • H. Hagiwara, H. Sasaki, N. Tsubokawa, T. Hoshi, T. Suzuki, T. Tsuda, and S. Kuwabata, “Immobilization of Pd on Nanosilica Dendrimer as SILC: Highly Active and Sustainable Cluster Catalyst for Suzuki-Miyaura Reaction,” Synlett 2010, no. 13 (2010): 1990–6.
  • D. Gajjar, R. Patel, H. Patel, and P. M. Patel, “Designing of Triazine Based Dendrimer and Its Application in Removal of Heavy Metal Ions from Water,” Chemical Science Transactions 3, no. 3 (2014): 897–08.
  • B. Asadi, I. Mohammadpoor-Baltork, S. Tangestaninejad, M. Moghadam, V. Mirkhani, and A. Landarani-Isfahani, “Synthesis and Characterization of B (III) Immobilized on Triazine Dendrimer-Stabilized Magnetic Nanoparticles: A Reusable Catalyst for the Synthesis of Aminonaphthoquinones and Bis-Aminonaphthoquinones,” New Journal of Chemistry 40, no. 7 (2016): 6171–84.
  • Amir Landarani-Isfahani, Majid Moghadam, Shima Mohammadi, Maryam Royvaran, Naimeh Moshtael-Arani, Saghar Rezaei, Shahram Tangestaninejad, Valiollah Mirkhani, and Iraj Mohammadpoor-Baltork, “Elegant pH-Responsive Nanovehicle for Drug Delivery Based on Triazine Dendrimer Modified Magnetic Nanoparticles,” Langmuir : The ACS Journal of Surfaces and Colloids 33, no. 34 (2017) : 8503–15.
  • J. Sackey, L. C. Razanamahandry, S. K. O. Ntwampe, N. Mlungisi, A. Fall, C. Kaonga, and Z. Y. Nuru, “Biosynthesis of CuO Nanoparticles Using Mimosa Hamata Extracts,” Materials Today: Proceedings 36 (2021): 540–8.
  • J. Bellini, R. Machado, M. Morelli, and R. Kiminami, “Thermal, Structural and Morphological Characterisation of Freeze-Dried Copper(II) Acetate Monohydrate and Its Solid Decomposition Products,”Materials Research 5, no. 4 (2002): 453–7.
  • P. Kuśtrowski, L. Chmielarz, R. Dziembaj, P. Cool, and E. F. Vansant, “Modification of MCM-48-, SBA-15-, MCF-, and MSU-Type Mesoporous Silicas with Transition Metal Oxides Using the Molecular Designed Dispersion Method,” The Journal of Physical Chemistry. B 109, no. 23 (2005): 11552–8.
  • A. Poeschl and D. Mountford, “A Facile Manganese Dioxide Mediated Oxidation of Primary Benzylamines to Benzamides,” Organic & Biomolecular Chemistry 12no. no. 36 (2014) : 7150–8.
  • N. A. Owston, A. J. Parker, and J. M. Williams, “Highly Efficient Ruthenium-Catalyzed Oxime to Amide Rearrangement,”Organic Letters 9, no. 18 (2007): 3599–601.
  • J. W. Williams, W. T. Rainey, Jr, and R. S. Leopold, “Identification of Amides through the Mercury Derivatives,”Journal of the American Chemical Society 64, no. 7 (1942): 1738–9.
  • R. García-Álvarez, A. E. Díaz-Álvarez, J. Borge, P. Crochet, and V. Cadierno, “Ruthenium-Catalyzed Rearrangement of Aldoximes to Primary Amides in Water,” Organometallics 31, no. 17 (2012): 6482–90.
  • M. Keyhaniyan, A. Shiri, H. Eshghi, and A. Khojastehnezhad, “Novel Design of Recyclable Copper(II) Complex Supported on Magnetic Nanoparticles as Active Catalyst for Beckmann Rearrangement in Poly (Ethylene Glycol),” Applied Organometallic Chemistry 32, no. 6 (2018) : e4344.
  • C. L. Allen, C. Burel, and J. M. Williams, “Cost Efficient Synthesis of Amides from Oximes with Indium or Zinc Catalysts,” Tetrahedron Letters 51, no. 20 (2010): 2724–6.
  • F. L. Yang, X. Zhu, D. K. Rao, X. N. Cao, K. Li, Y. Xu, X. Q. Hao, and M. P. Song, “Highly Efficient Synthesis of Primary Amides via Aldoximes Rearrangement in Water under Air Atmosphere Catalyzed by an Ionic Ruthenium Pincer Complex,” RSC Advances 6, no. 43 (2016): 37093–898.
  • M. H. Bahreininejad, and F. Moeinpour, “Green and Efficient Beckmann Rearrangement by Cu(II) Contained Nano‐Silica Triazine Based Dendrimer in Water,”Journal of the Chinese Chemical Society 68, no. 5 (2021): 893–901.
  • F. M. Moghaddam, A. A. Rastegar Rad, and H. Zali‐Boinee, “Solid Supported Microwave‐Assisted Beckmann Rearrangement of Ketoximes in Dry Media,” Synthetic Communications 34, no. no. 11 (2004): 2071–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.