232
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microwave-Assisted Chemistry: New Synthetic Application for the Rapid Construction of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives in Diisopropyl Ethyl Ammonium Acetate

ORCID Icon, , , & ORCID Icon
Pages 895-914 | Received 08 Feb 2021, Accepted 08 Dec 2021, Published online: 03 Jan 2022

References

  • X. Yan, S. Anguille, M. Bendahan, and P. Moulin, “Ionic Liquids Combined with Membrane Separation Processes: A Review,” Separation and Purification Technology 222 (2019): 230–53.
  • M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta, and H. G. Bonacorso, “Ionic Liquids in Heterocyclic Synthesis,” Chemical Reviews 108, no. 6 (2008): 2015–50.
  • N. Isambert, M. d. M. S. Duque, J.-C. Plaquevent, Y. Génisson, J. Rodriguez, and T. Constantieux, “Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Synthesis,” Chemical Society Reviews 40, no. 3 (2011): 1347–57.
  • M. Petkovic, K. R. Seddon, L. P. N. Rebelo, and C. S. Pereira, “Ionic Liquids: A Pathway to Environmental Acceptability,” Chemical Society Reviews 40, no. 3 (2011): 1383–403.
  • C. Garkoti, J. Shabir, and S. Mozumdar, “Amine‐Terminated Ionic Liquid Modified Magnetic Graphene Oxide (MGO‐IL‐NH 2): A Highly Efficient and Reusable Nanocatalyst for the Synthesis of 3‐Amino Alkylated Indoles,” ChemistrySelect 5, no. 14 (2020): 4337–46.
  • S. S. Kamble and G. S. Shankarling, “An Effect of H-Bonding in Synthesis of 1, 5-Diketones via Tandem Aldol-Michael Addition Reaction Using Room Temperature Ionic Liquid (RTIL),” ChemistrySelect 2, no. 5 (2017): 1917–24.
  • B. Banerjee, “[Bmim]BF 4: A Versatile Ionic Liquid for the Synthesis of Diverse Bioactive Heterocycles,” ChemistrySelect 2, no. 27 (2017): 8362–76.
  • A. Vioux, L. Viau, S. Volland, and J. Le. Bideau, “Use of Ionic Liquids in Sol-Gel; Ionogels and Applications,” Comptes Rendus Chimie 13, no. 1–2 (2010): 242–55.
  • B. Sanay, B. Strehmel, and V. Strehmel, “Green Approach of Photoinitiated Polymerization Using Monomers Derived from Oleic Acid and Ionic Liquid,”ChemistrySelect 4, no. 35 (2019): 10214–8.
  • E. Gelens, F. J. J. De Kanter, R. F. Schmitz, L. A. J. M. Sliedregt, B. J. Van Steen, C. G. Kruse, R. Leurs, M. B. Groen, and R. V. A. Orru, “Efficient Library Synthesis of Imidazoles Using a Multicomponent Reaction and Microwave Irradiation,”Molecular Diversity 10, no. 1 (2006): 17–22.
  • M. Li, Z. Zuo, L. Wen, and S. Wang, “Microwave-Assisted Combinatorial Synthesis of Hexa-Substituted 1,4-Dihydropyridines Scaffolds Using One-Pot Two-Step Multicomponent Reaction Followed by a S-Alkylation,” Journal of Combinatorial Chemistry 10, no. 3 (2008): 436–41.
  • J. Fairoosa, S. Saranya, S. Radhika, and G. Anilkumar, “Recent Advances in Microwave Assisted Multicomponent Reactions,”ChemistrySelect 5, no. 17 (2020): 5180–97.
  • B. M. Khadilkar and G. L. Rebeiro, “Microwave-Assisted Synthesis of Room-Temperature Ionic Liquid Precursor in Closed Vessel,” Organic Process Research & Development 6, no. 6 (2002): 826–8.
  • A. A. Saikia, R. Nishanth Rao, S. Das, S. Jena, S. Rej, B. Maiti, and K. Chanda, “Sequencing [3 + 2]-Cycloaddition and Multicomponent Reactions: A Regioselective Microwave-Assisted Synthesis of 1,4-Disubstituted 1,2,3-Triazoles Using Ionic Liquid Supported Cu(II) Precatalysts in Methanol,” Tetrahedron Letters 61, no. 36 (2020): 152273.
  • A. N. Dadhania, V. K. Patel, and D. K. Raval, “Ionic Liquid Promoted Facile and Green Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives under Microwave Irradiation,” Journal of Saudi Chemical Society 21 (2017): S163–S9.
  • M. Messali, “A Facile and Green Microwave-Assisted Synthesis of New Functionalized Picolinium-Based Ionic Liquids,” Arabian Journal of Chemistry 9 (2016): S564–S9.
  • Q. Zhu, H. Jiang, J. Li, M. Zhang, X. Wang, and C. Qi, “Practical Synthesis and Mechanistic Study of Polysubstituted Tetrahydropyrimidines with Use of Domino Multicomponent Reactions,” Tetrahedron 65, no. 23 (2009): 4604–13.
  • E. Ruijter, R. Scheffelaar, and R. V. A. Orru, “Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity,” Angewandte Chemie (International ed. in English) 50, no. 28 (2011): 6234–46.
  • L.-J. Yan and Y.-C. Wang, “Recent Advances in Green Synthesis of 3,3′-Spirooxindoles via Isatin-Based One-Pot Multicomponent Cascade Reactions in Aqueous Medium,” ChemistrySelect 1, no. 21 (2016): 6948–60.
  • R. C. Cioc, E. Ruijter, and R. V. A. Orru, “Multicomponent Reactions: advanced Tools for Sustainable Organic Synthesis,” Green Chemistry 16, no. 6 (2014): 2958–75.
  • O. V. Kharissova, B. I. Kharisov, C. M. Oliva González, Y. P. Méndez, and I. López, “Greener Synthesis of Chemical Compounds and Materials,” Royal Society Open Science 6, no. 11 (2019): 191378.
  • J.-C. Liu, S. Narva, K. Zhou, and W. Zhang, “A Review on the Antitumor Activity of Various Nitrogenous-Based Heterocyclic Compounds as NSCLC Inhibitors,” Mini Reviews in Medicinal Chemistry 19, no. 18 (2019): 1517–30.
  • S. Tahlan, S. Kumar, and B. Narasimhan, “Pharmacological Significance of Heterocyclic 1H-Benzimidazole Scaffolds: A Review,” BMC Chemistry 13, no. 1 (2019): 1–21.
  • S. Grasso, G. De Sarro, A. De Sarro, N. Micale, M. Zappalà, G. Puja, M. Baraldi, and C. De Micheli, “Synthesis and Anticonvulsant Activity of Novel and Potent 6,7-methylenedioxyphthalazin-1(2H)-ones,” Journal of Medicinal Chemistry 43, no. 15 (2000): 2851–9.
  • S. N. Shalkouhi, H. Kefayati, and S. Shariati, “Synthesis of Novel Spiro[Chromeno[4′,3′:3,4]Pyrazolo[1,2-b]Phthalazine-7,3′-Indoline]-2′,6,9,14-Tetraone,” Journal of the Iranian Chemical Society 16, no. 2 (2019): 263–7.
  • N. Watanabe, Y. Kabasawa, Y. Takase, M. Matsukura, K. Miyazaki, H. Ishihara, K. Kodama, and H. Adachi, “4-Benzylamino-1-Chloro-6-Substituted Phthalazines: Synthesis and Inhibitory Activity toward Phosphodiesterase 5,” Journal of Medicinal Chemistry 41, no. 18 (1998): 3367–72.
  • V. A. Chebanov, E. A. Muravyova, S. M. Desenko, V. I. Musatov, I. V. Knyazeva, S. V. Shishkina, O. V. Shishkin, and C. O. Kappe, “Microwave-Assisted Three-Component Synthesis of 7-Aryl-2-Alkylthio-4,7-Dihydro-1,2,4-Triazolo[1,5-a]-Pyrimidine-6-Carboxamides and Their Selective Reduction,” Journal of Combinatorial Chemistry 8, no. 3 (2006): 427–34.
  • J. S. Kim, H.-K. Rhee, H. J. Park, S. K. Lee, C.-O. Lee, and H.-Y. Park Choo, “Synthesis of 1-/2-Substituted-[1,2,3]Triazolo[4,5-g]Phthalazine-4,9-Diones and Evaluation of Their Cytotoxicity and Topoisomerase II Inhibition,” Bioorganic & Medicinal Chemistry 16, no. 8 (2008): 4545–50.
  • C.-K. Ryu, R.-E. Park, M.-Y. Ma, and J.-H. Nho, “Synthesis and Antifungal Activity of 6-Arylamino-Phthalazine-5,8-Diones and 6,7-Bis(Arylthio)-Phthalazine-5,8-Diones,” Bioorganic & Medicinal Chemistry Letters 17, no. 9 (2007): 2577–80.
  • C. B. Sangani, J. A. Makwana, Y.-T. Duan, N. J. Thumar, M.-Y. Zhao, Y. S. Patel, and H.-L. Zhu, “Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives: assessment of Their Antimicrobial, Antituberculosis and Antioxidant Activity,” Research on Chemical Intermediates 42, no. 3 (2016): 2101–17.
  • H. R. M. Rashdan, S. M. Gomha, M. S. El-Gendey, M. A. El-Hashash, and A. M. M. Soliman, “Eco-Friendly One-Pot Synthesis of Some New Pyrazolo[1,2-b] Phthalazinediones with Antiproliferative Efficacy on Human Hepatic Cancer Cell Lines,” Green Chemistry Letters and Reviews 11, no. 3 (2018): 264–74.
  • J. Sinkkonen, V. Ovcharenko, K. N. Zelenin, I. P. Bezhan, B. A. Chakchir, F. Al-Assar, and K. Pihlaja, “1H and 13C NMR Study of 1-Hydrazino-2,3-Dihydro-1H-Pyrazolo[1,2-a]Pyridazine-5,8-Diones and -1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones and Their Ring-Chain Tautomerism,” European Journal of Organic Chemistry 2002, no. 13 (2002): 2046.
  • Y. A. Tayade and D. S. Dalal, “β-Cyclodextrin as a Supramolecular Catalyst for the Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives in Water,” Catalysis Letters 147, no. 6 (2017): 1411–21.
  • R. Ghahremanzadeh, G. Shakibaei, and A. Bazgir, “An Efficient One-Pot Synthesis of 1 H-Pyrazolo[1,2-b] Phthalazine-5,10-Dione Derivatives,” Synlett 2008, no. 8 (2008): 1129–32.
  • F. Mohamadpour, M. T. Maghsoodlou, R. Heydari, and M. Lashkari, “Copper(II) Acetate Monohydrate: An Efficient and Eco-Friendly Catalyst for the One-Pot Multi-Component Synthesis of Biologically Active Spiropyrans and 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives under Solvent-Free Conditions,” Research on Chemical Intermediates 42, no. 12 (2016): 7841–53.
  • D. S. Raghuvanshi and K. N. Singh, “A Highly Efficient Green Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives and Their Photophysical Studies,” Tetrahedron Letters 52, no. 43 (2011): 5702–5.
  • A. Bashti, A. R. Kiasat, and B. Mokhtari, “Synthesis and Characterization of Dicationic 4,4′-Bipyridinium Dichloride Ordered Mesoporous Silica Nanocomposite and Its Application in the Preparation of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives,” RSC Advances 5, no. 33 (2015): 25816–23.
  • M. Veeranarayana Reddy and Y. T. Jeong, “InCl3-Catalyzed Green Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones under Solvent-Free Conditions,” Tetrahedron Letters 54, no. 27 (2013): 3546–9.
  • M. R. Nabid, S. J. T. Rezaei, R. Ghahremanzadeh, and A. Bazgir, “Ultrasound-Assisted One-Pot, Three-Component Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones,” Ultrasonics Sonochemistry 17, no. 1 (2010): 159–61.
  • R. Ghorbani-Vaghei, S. Noori, Z. Toghraei-Semiromi, and Z. Salimi, “One-Pot Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives under Solvent-Free Conditions,” RSC Advances 4, no. 89 (2014): 47925–8.
  • S.-H. Song, J. Zhong, Y.-H. He, and Z. Guan, “One-Pot Four-Component Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives,” Tetrahedron Letters 53, no. 52 (2012): 7075–7.
  • B. Maleki, S. Barat Nam Chalaki, S. Sedigh Ashrafi, E. Rezaee Seresht, F. Moeinpour, A. Khojastehnezhad, and R. Tayebee, “Caesium Carbonate Supported on Hydroxyapatite-Encapsulated Ni 0.5 Zn 0.5 Fe 2 O 4 Nanocrystallites as a Novel Magnetically Basic Catalyst for the One-Pot Synthesis of Pyrazolo[1,2-b]Phthalazine-5,10-Diones,” Applied Organometallic Chemistry 29, no. 5 (2015): 290–5.
  • G. Karthikeyan and A. Pandurangan, “Post Synthesis Alumination of KIT-6 Materials with Ia3d Symmetry and Their Catalytic Efficiency towards Multicomponent Synthesis of 1H-Pyrazolo[1,2-]Phthalazine-5,10-Dione Carbonitriles and Carboxylates,” Journal of Molecular Catalysis A: Chemical 361–362 (2012): 58–67.
  • J. Safaei-Ghomi, H. Shahbazi-Alavi, A. Ziarati, R. Teymuri, and M. R. Saberi, “A Highly Flexible Green Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives with CuI Nanoparticles as Catalyst under Solvent-Free Conditions,” Chinese Chemical Letters 25, no. 3 (2014): 401–5.
  • M. Kidwai and R. Chauhan, “A Rapid and an Efficient Route to the One-Pot, Multicomponent Synthesis of 1 H -Pyrazolo[1,2-b] Phthalazine-5,10-Dione Ring Systems,” Journal of Heterocyclic Chemistry 51, no. 6 (2014): 1689–96.
  • A. G. Mulik, D. R. Chandam, D. R. Patil, P. P. Patil, G. N. Mulik, S. T. Salunkhe, and M. B. Deshmukh, “Protic Ionic Liquids: A Lucid, Rational Tool for Synthesis of Phthalazinediones, Quinoxalines and Benzopyrans,” Research on Chemical Intermediates 41, no. 12 (2015): 10085–96.
  • A. Patil, T. Lohar, A. Mane, S. Kamat, and R. Salunkhe, “Deep Eutectic Solvent an Efficient Reaction Medium for the Synthesis of Chromeno Pyrazolo and Indazolo Phthalazine Derivatives,” Journal of Heterocyclic Chemistry 56, no. 11 (2019): 3145–51.
  • A. Vafaee, A. Davoodnia, M. Pordel, and M. R. Bozorgmehr, “An Efficient and High-Yielding One-Pot Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones Catalyzed by Sodium Hydrogen Carbonate under Solvent-Free Conditions,” Oriental Journal of Chemistry 31, no. 4 (2015): 2153–8.
  • H. R. Shaterian and M. Mohammadnia, “Mild Preparation of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives with Magnetic Fe3O4 Nanoparticles Coated by (3-Aminopropyl)-Triethoxysilane as Catalyst under Ambient and Solvent-Free Conditions,” Research on Chemical Intermediates 40, no. 1 (2014): 371–83.
  • V. S. Dofe, A. P. Sarkate, Z. M. Shaikh, C. K. Jadhav, A. S. Nipte, and C. H. Gill, “Ultrasound-Assisted Synthesis of Novel Pyrazole and Pyrimidine Derivatives as Antimicrobial Agents,” Journal of Heterocyclic Chemistry 55, no. 3 (2018): 756–62.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, V. S. Dofe, J. N. Sangshetti, V. M. Khedkar, and C. H. Gill, “Rapid Construction of Substituted Dihydrothiophene Ureidoformamides at Room Temperature Using Diisopropyl Ethyl Ammonium Acetate: A Green Perspective,” ACS Omega 5, no. 45 (2020): 29055–67.
  • Q. Zhang, S. Zhang, and Y. Deng, “Recent Advances in Ionic Liquid Catalysis,” Green Chemistry 13, no. 10 (2011): 2619.
  • P. A. Hunt, C. R. Ashworth, and R. P. Matthews, “Hydrogen Bonding in Ionic Liquids,” Chemical Society Reviews 44, no. 5 (2015): 1257–88.
  • L. M. Ramos, M. O. Rodrigues, and B. A. D. Neto, “Mechanistic Knowledge and Noncovalent Interactions as the Key Features for Enantioselective Catalysed Multicomponent Reactions: A Critical Review,” Organic & Biomolecular Chemistry 17, no. 31 (2019): 7260–9.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, V. D. Songire, A. P. Patil, and C. H. Gill, “Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate,” ACS Omega 4, no. 27 (2019): 22313–24.
  • A. V. Chate, S. P. Kamdi, A. N. Bhagat, C. K. Jadhav, A. Nipte, A. P. Sarkate, S. V. Tiwari, and C. H. Gill, “Design, Synthesis and SAR Study of Novel Spiro [Pyrimido[5,4-b]Quinoline-10,5′-Pyrrolo[2,3-d]Pyrimidine] Derivatives as Promising Anticancer Agents,” Journal of Heterocyclic Chemistry 55, no. 10 (2018): 2297–302.
  • A. S. Nipate, C. K. Jadhav, A. V. Chate, K. S. Taur, and C. H. Gill, “β‐Cyclodextrin Catalyzed Access to Fused 1,8‐Dihydroimidazo[2,3‐b] Indoles via One‐Pot Multicomponent Cascade in Aqueous Ethanol: Supramolecular Approach toward Sustainability,” Journal of Heterocyclic Chemistry 57, no. 2 (2020): 820–9.
  • A. V. Chate, A. S. Kulkarni, C. K. Jadhav, A. S. Nipte, and G. M. Bondle, “Multicomponent Reactions and Supramolecular Catalyst: A Perfect Synergy for Eco‐Compatible Synthesis of Pyrido[2,3‐ d] Pyrimidines in Water,” Journal of Heterocyclic Chemistry 57, no. 5 (2020): 2184–93.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, A. P. Patil, and C. H. Gill, “Ionic Liquid Catalyzed One‐Pot Multi‐Component Synthesis of Fused Pyridine Derivatives: A Strategy for Green and Sustainable Chemistry,” Journal of Heterocyclic Chemistry 57, no. 12 (2020): 4291–303.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, P. M. Kamble, G. A. Kadam, V. S. Dofe, V. M. Khedkar, and C. H. Gill, “Room Temperature Ionic Liquid Promoted Improved and Rapid Synthesis of Highly Functionalized Imidazole and Evaluation of Their Inhibitory Activity against Human Cancer Cells,” Journal of the Chinese Chemical Society 68, no. 6 (2021): 1067–1081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.