423
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design, Synthesis, and Biological Evaluation of Tryptanthrin Alkaloids as Potential anti-Diabetic and Anticancer Agents

, ORCID Icon, , , &
Pages 874-894 | Received 02 Aug 2020, Accepted 07 Dec 2021, Published online: 11 Jan 2022

References

  • P. Wasserscheid, and W. Keim, “Ionic Liquids—New “Solutions” for Transition Metal Catalysis,” Angewandte Chemie 39, no. 21 (2000): 3772–89.
  • T. Welton, “Ionic Liquids in Catalysis,” Coordination Chemistry Reviews 248, no. 21–24 (2004): 2459–77.
  • T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews 99, no. 8 (1999): 2071–84.
  • C. Teja, and F. R. Nawaz Khan, “Choline Chloride-Based Deep Eutectic Systems in Sequential FriedläNder Reaction and Palladium-Catalyzed sp3 CH Functionalization of Methyl Ketones,” ACS Omega 4, no. 5 (2019): 8046–55.
  • D. Mason, S. Magdassi, and Y. Sasson, “Interfacial Activity of Quaternary Salts as a Guide to Catalytic Performance in Phase-Transfer Catalysis,” The Journal of Organic Chemistry 55, no. 9 (1990): 2714–7.
  • S. Asai, H. Nakamura, M. Tanabe, and K. Sakamoto, “Distribution and Dissociation Equilibria of Phase-Transfer Catalysts, Tetrabutylammonium Salts,” Industrial & Engineering Chemistry Research 32, no. 7 (1993): 1438–41.
  • V. Calo, A. Nacci, A. Monopoli, and A. Fanizzi, “Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts,” Organic Letters 4, no. 15 (2002): 2561–3.
  • V. Calò, A. Nacci, A. Monopoli, A. Fornaro, L. Sabbatini, N. Cioffi, and N. Ditaranto, “Heck Reaction Catalyzed by Nanosized Palladium on Chitosan in Ionic Liquids,” Organometallics 23, no. 22 (2004): 5154–8.
  • V. Calo, A. Nacci, A. Monopoli, E. Ieva, and N. Cioffi, “Copper Bronze Catalyzed Heck Reaction in Ionic Liquids,” Organic Letters 7, no. 4 (2005): 617–20.
  • D. E. Kaufmann, M. Nouroozian, and H. Henze, “Molten Salts as an Efficient Medium for Palladium Catalyzed CC Coupling Reactions,” Synlett 1996, no. 11 (2000): 1091–2.
  • T. Jeffery, and M. David, “[Pd/Base/QX] Catalyst Systems for Directing Heck-Type Reactions,” Tetrahedron Letters 39, no. 32 (1998): 5751–4.
  • Y. Liu, M. Li, Y. Lu, G. H. Gao, Q. Yang, and M. Y. He, “Simple, Efficient and Recyclable Palladium Catalytic System for Heck Reaction in Functionalized Ionic Liquid Network,” Catalysis Communications 7, no. 12 (2006): 985–9.
  • H. J. Xu, Y. Q. Zhao, and X. F. Zhou, “Palladium-Catalyzed Heck Reaction of Aryl Chlorides under Mild Conditions Promoted by Organic Ionic Bases,” The Journal of Organic Chemistry 76, no. 19 (2011): 8036–41.
  • A. M. Sajith, and A. Muralidharan, “Exploration of Copper and Amine-Free Sonogashira Cross Coupling Reactions of 2-Halo-3-Alkyl Imidazo [4, 5-b] Pyridines Using Tetrabutyl Ammonium Acetate as an Activator under Microwave Enhanced Conditions,” Tetrahedron Letters 53, no. 39 (2012): 5206–10.
  • C. Teja, and F. R. Nawaz Khan, “Facile Synthesis of 2-Acylthieno[2,3-b]quinolines via Cu-TEMPO-Catalyzed Dehydrogenation, sp2-C-H Functionalization (Nucleophilic Thiolation by S8) of 2-Haloquinolinyl Ketones,” Organic Letters 22, no. 5 (2020): 1726–30.
  • C. Teja, S. N. Babu, A. Noor, J. A. Daniel, S. A. Devi, and F. R. Nawaz Khan, “Cu/TEMPO Catalyzed Dehydrogenative 1, 3-Dipolar Cycloaddition in the Synthesis of Spirooxindoles as Potential Antidiabetic Agents,” RSC Advances 10, no. 21 (2020): 12262–71.
  • C. Teja, and F. Rahman Nawaz Khan, “Tetrabutylammonium‐Bromide‐Promoted Synthesis of Spirooxindoles through Alkyne‐Aldehyde C − C Coupling and 1, 3‐Dipolar Cycloaddition Using Ytterbium Triflate Catalyst,” ChemistrySelect 5, no. 21 (2020): 6470–4.
  • V. Polshettiwar, and R. S. Varma, “Microwave-Assisted Organic Synthesis and Transformations Using Benign Reaction Media,” Accounts of Chemical Research 41, no. 5 (2008): 629–39.
  • B. A. Roberts, and C. R. Strauss, “Toward Rapid, “Green”, Predictable Microwave-assisted Synthesis,” Accounts of Chemical Research 38, no. 8 (2005): 653–61.
  • C. Kappe, O. A. Stadler, and D. Dallinger, Microwaves in Organic and Medicinal Chemistry (Hoboken, NJ: Wiley Online Library, 2012).
  • B. L. Hayes, “Recent Advances in Microwave-Assisted Synthesis,” Aldrichimica Acta 37, (2004): 66–76.
  • C. M. Martínez-Viturro, and D. Dominguez, “Synthesis of the Antitumoural Agent Batracylin and Related Isoindolo [1, 2-b] Quinazolin-12 (10H)-Ones,” Tetrahedron Letters 48, no. 6 (2007): 1023–6.
  • J. M. Hwang, T. Oh, T. Kaneko, A. M. Upton, S. G. Franzblau, Z. Ma, S. N. Cho, and P. Kim, “Design, Synthesis, and Structure-activity Relationship Studies of Tryptanthrins as Antitubercular Agents,” Journal of Natural Products 76, no. 3 (2013): 354–67.
  • F. Schindler, and H. Zahner, “Stoffwechselprodukte Von Mikroorganismen,” Archiv fur Mikrobiologie 79, no. 3 (1971): 187–203.
  • A. Kumar, V. D. Tripathi, and P. Kumar, “β-Cyclodextrin Catalysed Synthesis of Tryptanthrin in Water,” Green Chemistry 13, no. 1 (2011): 51–4.
  • P. P. Bandekar, K. A. Roopnarine, V. J. Parekh, T. R. Mitchell, M. J. Novak, and R. R. Sinden, “Antimicrobial Activity of Tryptanthrins in Escherichia coli,” Journal of Medicinal Chemistry 53, no. 9 (2010): 3558–65.
  • K. K. Pitzer, J. P. Scovill, D. E. Kyle, and L. Gerena, (Google Patents, 2003). "Antimalarial and antiproliferative pharmacophore models, novel trytptanthrin compounds having increased solubility, and methods of making and using thereof," US Patent 6, (2003): 487–31.
  • J. Scovill, E. Blank, M. Konnick, E. Nenortas, and T. Shapiro, “Antitrypanosomal Activities of Tryptanthrins,” Antimicrobial Agents and Chemotherapy 46, no. 3 (2002): 882–3.
  • A. K. Bhattacharjee, “Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo [2, 1-b] Quinazoline-6, 12-Dione Derivatives in Relation to Antileishmanial Activity Using Quantum Chemical, Cyclic Voltammetry and 3-D-QSAR CATALYST Procedures,” Bioorganic & Medicinal Chemistry 10, (2002): 1979–89.
  • Y. Takase, T. Saeki, N. Watanabe, H. Adachi, S. Souda, and I. Saito, “Cyclic GMP Phosphodiesterase Inhibitors. 2. Requirement of 6-Substitution of Quinazoline Derivatives for Potent and Selective Inhibitory Activity,” Journal of Medicinal Chemistry 37, no. 13 (1994): 2106–11.
  • S. T. Yu, T. M. Chen, S. Y. Tseng, and Y. H. Chen, “Tryptanthrin Inhibits MDR1 and Reverses Doxorubicin Resistance in Breast Cancer Cells,” Biochemical and Biophysical Research Communications 358, no. 1 (2007): 79–84.
  • R. Guda, R. Korra, S. Balaji, R. Palabindela, R. Eerla, H. Lingabathula, N. R. Yellu, G. Kumar, and M. Kasula, “Design, Synthesis and Biological Evaluation of 8-substituted-6-Hydrazonoindolo[2,1-b]quinazolin-12(6H)-one Scaffolds as Potential Cytotoxic Agents: IDO-1 Targeting Molecular Docking Studies,” Bioorganic & Medicinal Chemistry Letters 27, no. 20 (2017): 4741–8.
  • R. Taheri-Ledari, W. Zhang, M. Radmanesh, N. Cathcart, A. Maleki, and V. Kitaev, “Plasmonic Photothermal Release of Docetaxel by Gold Nanoparticles Incorporated onto Halloysite Nanotubes with Conjugated 2D8-E3 Antibodies for Selective Cancer Therapy,” Journal of Nanobiotechnology 19, (2021): 1–21.
  • R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. S. Bani, and M. Azizi, “A New Generation of Star Polymer: Magnetic Aromatic Polyamides with Unique Microscopic Flower Morphology and in Vitro Hyperthermia of Cancer Therapy,” Journal of Materials Science 55, no. 1 (2020): 319–36.
  • A. Maleki, “An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles,” Polycyclic Aromatic Compounds 38, no. 5 (2018): 402–9.
  • A. Maleki, “One-Pot Three-Component Synthesis of Pyrido [2′, 1′: 2, 3] Imidazo [4, 5-c] Isoquinolines Using Fe 3 O 4@ SiO 2–OSO 3 H as an Efficient Heterogeneous Nanocatalyst,” RSC Advances 4, no. 109 (2014): 64169–73.
  • A. Maleki, “One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles,” Tetrahedron Letters 54, no. 16 (2013): 2055–9.
  • A. Maleki, “Fe3O4/SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines,” Tetrahedron 68, no. 38 (2012): 7827–33.
  • H. E. Lebovitz, “Type 2 Diabetes: An Overview,” Clinical Chemistry 45, no. 8 (1999): 1339–45.
  • D. Meetoo, P. McGovern, and R. Safadi, “An Epidemiological Overview of Diabetes across the World,” British Journal of Nursing 16, no. 16 (2007): 1002–7.
  • L. Chen, D. J. Magliano, and P. Z. Zimmet, “The Worldwide Epidemiology of Type 2 Diabetes mellitus-present and future perspectives,” Nature Reviews Endocrinology 8, no. 4 (2011): 228–36.
  • C. Almeida, and R. Cruz, “Diabetes Mellitus II an Epidemic of the 21st Century: Therapeutic Challenges,” European Journal of Public Health 29, (2019): ckz035.
  • V. M. Sharma, P. Prasanna, K. V. A. Seshu, B. Renuka, C. V. L. Rao, G. S. Kumar, C. P. Narasimhulu, P. A. Babu, R. C. Puranik, D. Subramanyam, et al. “Novel Indolo [2, 1-b] Quinazoline Analogues as Cytostatic Agents: Synthesis, Biological Evaluation and Structure–Activity Relationship,” Bioorganic & Medicinal Chemistry Letters 12, no. 17 (2002): 2303–7.
  • S. Sultan, V. Gupta, and B. A. Shah, “Photoredox-Catalyzed Isatin Reactions: Access to Dibenzo-1, 7-Naphthyridine Carboxylate and Tryptanthrin,” ChemPhotoChem 1, no. 4 (2017): 120–4.
  • H. Hou, H. Li, Y. Han, and C. Yan, “Synthesis of Visible-Light Mediated Tryptanthrin Derivatives from Isatin and Isatoic Anhydride under Transition Metal-Free Conditions,” Organic Chemistry Frontiers 5, no. 1 (2018): 51–4.
  • F. C. Jia, Z. W. Zhou, C. Xu, Y. D. Wu, and A. X. Wu, “Divergent Synthesis of Quinazolin-4(3H)-ones and Tryptanthrins Enabled by a tert-Butyl Hydroperoxide/K3PO4-Promoted Oxidative Cyclization of Isatins at Room Temperature,” Organic Letters 18, no. 12 (2016): 2942–5.
  • C. Wang, L. Zhang, A. Ren, P. Lu, and Y. Wang, “Cu-Catalyzed Synthesis of Tryptanthrin Derivatives from Substituted Indoles,” Organic Letters 15, no. 12 (2013): 2982–5.
  • X. Li, H. Huang, C. Yu, Y. Zhang, H. Li, and W. Wang, “Synthesis of Tryptanthrins by Organocatalytic and Substrate Co-Catalyzed Photochemical Condensation of Indoles and Anthranilic Acids with Visible Light and O2,” Organic Letters 18, no. 21 (2016): 5744–7.
  • J. L. Liang, S. E. Park, Y. Kwon, and Y. Jahng, “Synthesis of Benzo-Annulated Tryptanthrins and Their Biological Properties,” Bioorganic & Medicinal Chemistry 20, no. 16 (2012): 4962–7.
  • B. S. Reddy, D. M. Reddy, G. N. Reddy, M. R. Reddy, and V. K. Reddy, “Domino Oxidative Cyclization of 2-Aminoacetophenones for the One-Pot Synthesis of Tryptanthrin Derivatives,” European Journal of Organic Chemistry 2015, no. 36 (2015): 8018–22.
  • T. Abe, T. Itoh, T. Choshi, S. Hibino, and M. Ishikura, “One-Pot Synthesis of Tryptanthrin by the Dakin Oxidation of Indole-3-Carbaldehyde,” Tetrahedron Letters 55, no. 38 (2014): 5268–70.
  • N. Mexia, S. Koutrakis, G. He, A. L. Skaltsounis, M. S. Denison, and P. Magiatis, “A Biomimetic, One-Step Transformation of Simple Indolic Compounds to Malassezia-Related Alkaloids with High AhR Potency and Efficacy,” Chemical Research in Toxicology 32, no. 11 (2019): 2238–49.
  • M. Sun, C. Behrens, L. Feng, N. Ozburn, X. Tang, G. Yin, R. Komaki, M. Varella-Garcia, W. K. Hong, K. D. Aldape, et al. “HER Family Receptor Abnormalities in Lung Cancer Brain Metastases and Corresponding Primary Tumors,” Clinical Cancer Research 15, no. 15 (2009): 4829–37.
  • R. Urich, G. Wishart, M. Kiczun, A. Richters, N. Tidten-Luksch, D. Rauh, B. Sherborne, P. G. Wyatt, and R. Brenk, “De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments,”ACS Chemical Biology 8, no. 5 (2013): 1044–52.
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 23, no. 1–3 (1997): 3–25.
  • C. A. Lipinski, “Lead- and Drug-like Compounds: The Rule-of-five Revolution,” Drug Discovery Today Technologies 1, no. 4 (2004): 337–41.
  • D. E. Pires, T. L. Blundell, and D. B. Ascher, “pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures,” Journal of Medicinal Chemistry 58, no. 9 (2015): 4066–72.
  • H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, “The Protein Data Bank,” Nucleic Acids Research 28, (2000): 235–42.
  • S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, et al. “PubChem Substance and Compound Databases,” Nucleic Acids Research 44, no. D1 (2016): D1202–D1213.
  • F. De Falco, C. Di Giovanni, C. Cerchia, D. De Stefano, A. Capuozzo, C. Irace, T. Iuvone, R. Santamaria, R. Carnuccio, A. Lavecchia, et al. “Novel Non-Peptide Small Molecules Preventing IKKβ/NEMO Association Inhibit NF-κB Activation in LPS-Stimulated J774 Macrophages,” Biochemical Pharmacology 104, (2016): 83–94.
  • R. Elancheran, K. Saravanan, B. Choudhury, S. Divakar, S. Kabilan, M. Ramanathan, B. Das, R. Devi, and J. Kotoky, “Design and Development of Oxobenzimidazoles as Novel Androgen Receptor Antagonists,” Medicinal Chemistry Research 25, no. 4 (2016): 539–52.
  • R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, et al. “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1739–49.
  • V. Ramar, and S. Pappu, “Exploring the Inhibitory Potential of Bioactive Compound from Luffa Acutangula against NF-κB-A Molecular Docking and Dynamics Approach,” Computational Biology and Chemistry 62, (2016): 29–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.