178
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Conformational, Reactivity Analysis, Wavefunction-Based Properties, Molecular Docking and Simulations of a Benzamide Derivative with Potential Antitumor Activity-DFT and MD Simulations

, , , , &
Pages 2015-2031 | Received 11 Sep 2021, Accepted 28 Jan 2022, Published online: 16 Feb 2022

References

  • A. Dore, B. Asproni, A. Scampuddu, G. A. Pinna, C. T. Christoffersen, M. Langgard, and J. Kehler, “Synthesis and SAR Study of Novel Tricyclic Pyrazoles as Potent Phosphodiesterase 10A Inhibitors,” European Journal of Medicinal Chemistry 84 (2014): 181–93. 10.1016/j.ejmech.2014.07.020.
  • D. F. Bonafoux, S. L. Bonar, M. Clare, A. M. Donnelly, J. L. Glaenzer, J. A. Guzova, H. Huang, N. N. Kishore, F. J. Koszyk, P. J. Lennon, et al, “Aminopyridinecarboxamide-Based Inhibitors: Structure-Activity Relationship,” Bioorganic & Medicinal Chemistry 18, no. 1 (2010): 403–14. 10.1016/j.bmc.2009.10.040.
  • P. Gautam, D. Gautam, and R. P. Chaudhary, “Experimental and Theoretical Investigations on Acid Catalysed Tereoselective Synthesis of New Indazolyl-Thiazole Derivatives,” Journal of Molecular Structure 1160 (2018): 333–41. 10.1016/j.molstruc.2018.02.003.
  • M. Pordel, S. A. Beyramabadi, and A. Mohammadinejad, “Synthesis, DFT Calculations and Cyclic Voltammetry Analysis of New Heterocyclic Green Dyes: 2-(5-Hydroxyimino-1-Alkyl-4,5-Dihydro-1H-4-Indazolyliden)-2-Arylacetonitriles,” Dyes and Pigments 102 (2014): 46–52. 10.1016/j.dyepig.2013.10.021.
  • E. Alikhani, M. Pordel, and L. R. Daghigh, “Pyrazolo[4,3-a]Quinindoline as a New Highly Fluorescent Heterocyclic System: Design, Synthesis, Spectroscopic Characterization and DFT Calculations,” Spectrochimica Acta 136 (2015): 1484–90. 10.1016/j.saa.2014.10.040.
  • S. Poorhaji, M. Pordel, and S. Ramezani, “New Heterocyclic Green, Blue and Orange Dyes from Indazole: Synthesis, Tautomerism, Alkylation Studies, Spectroscopic Characterization and DFT/TD-DFT Calculations,” Journal of Molecular Structure 1119 (2016): 151–6. 10.1016/j.molstruc.2016.04.078.
  • J. K. Park, W. K. Shin, and D. K. An, “New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl (Amino) Aluminium,” Bulletin of the Korean Chemical Society 34, no. 5 (2013): 1592–4. 10.5012/bkcs.2013.34.5.1592.
  • R. M. Lanigan, P. Starkov, and T. D. Sheppard, “Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH2CF3)3,” The Journal of Organic Chemistry 78, no. 9 (2013): 4512–23. 10.1021/jo400509n.
  • R. Tang, L. Jin, C. Mou, J. Yin, S. Bai, D. Hu, J. Wu, S. Yang, and B. Song, “Synthesis, Antifungal and Antibacterial Activity for Novel Amide Derivatives Containing a Triazole Moiety,” Chemistry Central Journal 7, no. 1 (2013): 30–6. 10.1186/1752-153X-7-30.
  • D. Rai and R. K. Sing, “Synthesis and Antibacterial Activity of Benzamides and Sulfonamide Derived from 2-Amino-5-Bromo/Nitropyridine against Bacterial Strains Isolated from Clinical Patients,” Indian Journal of Chemistry 50B, no. 7 (2011): 931–6. https://nopr.niscair.res.in/handle/123456789/12098.
  • Y. F. Xiang, C. W. Qian, G. W. Xing, J. Hao, M. Xia, and Y. F. Wang, “Anti-Herpes Simplex Virus Efficacies of 2-Aminobenzamide Derivatives as Novel HSP90 Inhibitors,” Bioorganic & Medicinal Chemistry Letters 22, no. 14 (2012): 4703–6. 10.1016/j.bmcl.2012.05.079.
  • J. F. Lu, P. Huang, D. Zhang, Q. Wang, N. Zheng, R. Wu, Q. Liu, L. X. Jin, X. H. Yu, X. H. Ji, et al, “1-(3-Amino-4-Moropholino-1H-Indazole-1-Carbonyl)-N-Phenylcyclopropane-1-Carboxamide: Design, Synthesis, Crystal Structure, Antitumor Activity, DFT and Hirshfeld Surface Analysis,” Journal of Molecular Structure 1210 (2020): 127996. 10.1016/j.molstruc.2020.127996.
  • K. Park, B. M. Lee, K. H. Hyun, T. Han, D. H. Lee, and H. H. Choi, “Design and Synthesis of Acetylenyl Benzamide Derivatives as Novel Glucokinase Activators for the Treatment of t2dm,” ACS Medicinal Chemistry Letters 6, no. 3 (2015): 296–301. 10.1021/ml5004712.
  • N. Charaya, D. Pandita, A. S. Grewal, and V. Lather, “Design, Synthesis and Biological Evaluation of Novel Thiazol—2yl Benzamide Derivatives as Glucokinase Activators,” Computational Biology and Chemistry 73 (2018): 221–9. 10.1016/j.compbiolchem.2018.02.018.
  • A. S. Grewal, R. Kharb, D. N. Prasad, J. S. Dua, and V. Lather, “Design, Synthesis and Evaluation of Novel 3,5-Disubstiuted Benzamide Derivatives as Allosteric Glucokinase Activators,” BMC Chemistry 13 (2019): 1–14. 10.1186/s13065-019-0532-8.
  • Z. Wang, X. Shi, H. Zhang, L. Yu, Y. Cheng, H. Zhang, H. Zhang, J. Zhou, J. Chen, X. Shen, et al, “Discovery of Cycloalkyl-Fused N-thiazol-2-yl-benzamides as Tissue Non-specific Glucokinase Activators: Design, Synthesis, and Biological Evaluation ,” European Journal of Medicinal Chemistry 139 (2017): 128–52. 10.1016/j.ejmech.2017.07.051.
  • A. S. Grewal, S. Singh, D. Pandita, and V. Lather, “Design, Synthesis and Antidiabetic Activity of Novel Sulfamoyl Benzamide,” Journal of Pharmaceutical Technology, Research and Management 6 (2018): 115–24. 10.15415/jptrm.2018.62008.
  • E. O. Ibnouf, A. Kaiba, M. H. Geesi, A. M. Alghamdi, Z. S. Aldajani, O. Dehbi, P. Guionneau, R. Azzallou, and Y. Riadi, “Synthesis, Antibacterial Evaluation, Crystal Structure, Molecular Interaction Analysis and DFT Calculations of Novel N-Hydroxy-2-(4-Methylbenzmido)Benzamide,” Journal of Molecular Structure 1246 (2021): 131214. 10.1016/j.molstruc.2021.131214.
  • M. J. Ahsan, R. K. Kumawat, S. S. Jadav, M. H. Geesi, M. A. Bakht, M. Z. Hassan, A. B. Saleh Al-Tamimi, Y. Riadi, S. A. Hussain, N. M. Ganta, et al, “Synthesis, Cytotoxic Evaluation and Molecular Docking Studies of N-(7-Hydroxy-4-Methyl-2-Oxoquinolin-1(2H)Acetamide/Benzamide Analogues,” Letters in Drug Design and Discovery 16 (2019): 182–93. 10.2174/1570180815666180501160047.
  • A. Dwivedi, and A. Kumar, “Molecular Docking and Comparative Vibrational Spectroscopic Analysis, HOMO-LUMO, Polarizabilities, and Hyperpolarizabilities of N-(4-Bromophenyl)-4-Nitrobenzamide by Different DFT (B3LYP, B3PW1 and MPW1PW91) Methods,” Polycyclic Aromatic Compounds 41, no. 2 (2021): 387–99. https://doi.org/10.1080/10406638.2019.1591466
  • M. A. Patharia, S. V. Raut, B. K. Dhotre, and M. A. Pathan, “Design, Synthesis of Some New N-(2-Fluoro-4-Morpholin-4-yl-Phenyl)-Substituted-Benzamide Derivatives and Screening of Their Microbial Activities,” Polycyclic Aromatic Compounds (2020). 10.1080/10406638.2020.1833047.
  • H. Fujieda, M. Kogami, M. Sakairi, N. Kato, M. Makino, N. Takahashi, T. Miyazawa, S. Harada, and T. Yamashita, “Discovery of a Potent Glucokinase Activator with a Favorable Liver and Pancreas Distribution Pattern for the Treatment of Type 2 Diabetes Mellitus,” European Journal of Medicinal Chemistry 156 (2018): 269–94. 10.1016/j.ejmech.2018.06.060.
  • A. M. Deshpande, D. Bhuniya, S. De, B. Dave, V. P. Vyavahare, S. H. Kurhade, S. R. Kandalkar, K. P. Nai, B. S. Kobal, R. D. Kaduskar, et al, “Discovery of Liver-Directed Glucokinase Activator having Anti-Hyperglycemic Effect without Hypoglycemia ,” European Journal of Medicinal Chemistry 133 (2017): 268–86..
  • S. C. Khadse, N. D. Amnerkar, K. S. Dighole, A. M. Dhote, V. R. Patil, D. K. Lokwani, V. G. Ugale, N. B. Charbe, and V. A. Chatpalliwar, “Hetero-Substituted Sulfonamide-Benzamide Hybrids as Glucokinase Activators: Design, Synthesis, Molecular Docking and in Silico ADME Evaluation,” Journal of Molecular Structure 1222 (2020): 128916. 10.1016/j.molstruc.2020.128916.
  • S. Malasala, M. N. Ahmad, J. Gour, M. Shukla, G. Kaul, A. Akhir, S. Gatadi, Y. V. Madhavi, S. Chopra, and S. Nanduri, “Synthesis, Biological Evaluation and Molecular Modeling Insights of 2-Arylquinazoline Benzamide Derivatives as anti-Tubercular Agents,” Journal of Molecular Structure 1218 (2020): 128493. https://doi.org/10.1016/j.molstruc.2020.128493.
  • R. Sharma, J. Joubert, H. Su, M. R. Caira, and S. F. Malan, “Synthesis, Crystal Structure, DFT Studies and Biological Evaluation of N-Benzamido Derivatives of Oxahexacycloundecyl Amines: A Case of Enantiomerism Leading to Molecular Disorder,” Journal of Molecular Structure 1215 (2020): 128248. 10.1016/j.molstruc.2020.128248.
  • M. M. Goldenber, “Celecoxib, a Selective Cyclooxygenase-2 Inhibitor for the Treatment of Rheumatoid Arthritis and Osteoarthritis,” Clinical Therapeutics 21 (1999): 1497–513..
  • A. I. Graul, E. Cruces, C. Dulsat, E. Arias, and M. Stringer, “The Year’s New Drugs and Biologics,” Drugs of Today 48, no. 1 (2012): 33. 10.1358/dot.2012.48.1.1769676.
  • R. M. Young, and L. M. Staudt, “Ibrutinib Treatment of CLL: The Cancer Fights Back,” Cancer Cell 26, no. 1 (2014): 11–3. 10.1016/j.ccr.2014.06.023.
  • J. J. Cui, M. Tran-Dube, H. Shen, M. Nambu, P. P. Kung, M. Pairish, L. Jia, J. Meng, L. Funk, I. Botrous, M. McTigue et al., “Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK) enzylsulf),” Journal of Medicinal Chemistry 54, no. 18 (2011): 6342–63. 10.1021/jm2007613
  • L. P. H. Yang and K. McKeage, “Axitinib: In Advanced, Treatment-Experienced Renal Cell Carcinoma,” Drugs 72, no. 18 (2012): 2375–84.10.2165/11209230-000000000-00000.
  • E. Polo, L. Prent-Peñaloza, Y. A. R. Núñez, L. Valdés-Salas, J. Trilleras, J. Ramos, J. A. Henao, A. Galdámez, A. Morales-Bayuelo, and M. Gutiérrez, “Microwave-Assisted Synthesis, Biological Assessment, and Molecular Modeling of Aza-Heterocycles: Potential Inhibitory Capacity of Cholinergic Enzymes to Alzheimer’s Disease,” Journal of Molecular Structure 1224 (2021): 129307. 10.1016/j.molstruc.2020.129307.
  • M. Fukudo, G. Tamaki, M. Azumi, H. Kakizaki, S. Matsumoto, and Y. Tasaki, “Absorption of the Orally Active Multikinase Inhibitor Axitinib as a Therapeutic Index to Guide Dose Titration in Metastatic Renal Cell Carcinoma,” Investigational New Drugs 39, no. 2 (2021): 595–604. 10.1007/s10637-020-01023-z.
  • B. I. Rini, E. R. Plimack, V. Stus, R. Gafanov, R. Hawkins, D. Nosov, F. Pouliot, B. Alekseev, D. Soulieres, B. Melichar, I. Vynnychenko, et al, “Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma,” New England Journal of Medicine 380, no. 12 (2019): 1116–27. 10.1056/NEJMoa1816714.
  • M. Vasileiadis, C. C. Pantelides, and C. S. Adjiman, “Prediction of the Crystal Structures of Axitinib, a Polymorphic Pharmaceutical Molecule,” Chemical Engineering Science 121 (2015): 60–76. 10.1016/j.ces.2014.08.058.
  • R. Pedrosa, C. Andres, J. P. Duque-Soladana, A. Maestro, and J. Nieto, “Regio- and Diastereoselective Tandem Addition-Carbocyclization Promoted by Sulfanyl Radicals on Chiral Perhydro-1,3-Benzoxazines,” Tetrahedron: Asymmetry. 14, no. 19 (2003): 2985–90. 10.1016/j.tetasy.2003.06.003.
  • S. Narayanan, N. A. Gujarati, J.-Q. Wang, Z.-X. Wu, J. Koya, Q. Cui, V. L. Korlipara, C. R. Ashby Jr, and Z. S. Chen, “The Novel Benzamide Derivative, VKNG-2, Restores the Efficacy of Chemotherapeutic Drugs in Colon Cancer Cell Lines by Inhibiting the ABCG2 Transporter,” International Journal of Molecular Sciences 22, no. 5 (2021): 2463. 10.3390/ijms22052463.
  • P. Peluso and B. Chankvetadze, “The Molecular Bases of Chiral Recognition in 2-(Benzylsulfinyl)Benzamide Enantioseparation,” Analytica Chimica Acta 1141 (2021): 194–205. 10.1016/j.aca.2020.10.050.
  • J. Zhang, H. Xiong, F. Yang, J. He, T. Chen, D. Fu, P. Zheng, and Q. Tang, “Design, Synthesis and Biological Evaluation of Novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide Derivatives as Potential Antitumor Agents ,” Bioorganic & Medicinal Chemistry Letters 33 (2021): 127740https://doi.org/10.1016/j.bmcl.2020.127740
  • G. Routholla, S. Pulya, T. Patel, S. A. Amin, N. Adhikari, S. Biswas, T. Jha, and B. Ghosh, “Synthesis, Biological Evaluation, and Molecular Docking Analysis of Novel Linker-less Benzamide based Potent and Selective HDAC3 inhibitors ,” Bioorganic chemistry 114 (2021): 105050. 10.1016/j.bioorg.2021.105050.
  • C. Y. Panicker, A. Raj, H. T. Varghese, K. Raju, and Y. S. Mary, “Vibrational sSpectroscopic sStudies and cComputational sStudy of mMethyl-(2-mMethyl-4,6-dDinitrophenyl sSulfanyl)eEthanoate,” Journal of Raman Spectroscopy 41, no. 7 (2010): 829–38. 10.1002/jrs.2509.
  • A. Raj, Y. S. Mary, C. Y. Panicker, H. T. Varghese, and K. Raju, “IR, Raman, SERS and Computational Study of 2-(Benzylsulfanyl)-3,5-Dinitrobenzoic acienzylsulfinyl ,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 113 (2013): 28–36. 10.1016/j.saa.2013.04.096.
  • N. Z. Alzoman, Y. S. Mary, C. Y. Panicker, I. A. Al-Swaidan, A. A. El-Emam, O. A. Al-Deeb, A. A. Al-Saadi, C. Van Alsenoy, and J. A. War, “Spectroscopic Investigation (FT-IR and FT-Raman), Vibrational Assignments, HOMO-LUMO, NBO, MEP Analysis and Molecular Docking Study of 2-[(4-Chlorobenzyl)Sulfanyl]-4-(2-Methylpropyl)-6-(Phenylsulfanyl)-Pyrimidine-5-Carbonitrile, a Potential Chemotherapeutic Agent,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 139 (2015): 413–24. doi: 10.1016/j.saa/2014.12.043.
  • P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz et al., “Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging,” Nature Materials 9, no. 2 (2010): 172–8. 10.1038/nmat2608.
  • H. Hakkinen, “The Gold-Sulfur Interface at the Nanoscale,” Nature Chemistry. 4 (2012): 443–55. 10.1038/nchem.1352.
  • K. B. Bhavitha, A. K. Nair, S. Perumbilavil, S. Joseph, M. S. Kala, A. Saha, R. A. Narayanan, N. Hameed, S. Thomas, O. S. Oluwafemi et al., “Investigating Solvent Effects on Aggregation Behavior, Linear and Nonlinear Optical Properties of Silver Nanoclusters,” Optical Materials 73 (2017): 695–705. 10.1016/j.optmat.2017.09.024.
  • B. Yin and Z. Luo, “Coinage Metal Clusters: From Superatom Chemistry to Genetic Materials,” Coordination Chemistry Reviews 429 (2021): 213643. 10.1016/j.ccr.2020.213643.
  • J. S. Al-Otaibi, Y. S. Mary, Y. S. Mary, Z. Ullah, and H. W. Kwon, “Adsorption Behavior and Solvent Effects of an Adamantane-Triazole Derivative on Metal Clusters-DFT Simulation Studies,” Journal of Molecular Liquids. 345 (2022): 118242. 10.1016/j.molliq.2021.118242.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al., Gaussian 16, Revision A.03 (Wallingford CT: Gaussian, Inc., 2016).
  • K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 20. Basis Set for Correlated Wave-Function,” Journal of Chemical Physics 72 (1980): 650–4. 10.1063/1.438955.
  • R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6.1 (Shawnee Mission, KS: Semichem Inc., 2016).
  • T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92. 10.1002/jcc.22885.
  • J. A. Lemkul, W. J. Allen, and D. R. Bevan, “Practical Consideration for Building GROMOS-Compatible Small Molecule Topologies,” Journal of Chemical Information and Modeling 50, no. 12 (2010): 2221–35. 10.1021/ci00335w.
  • B. S. Gangadharappa, R. Sharath, P. D. Revanasiddappa, V. Chandramohan, M. Balasubramaniam, and T. P. Vardhineni, “Structural Insights of Metallo-Beta-Lactamase Revealed an Effective Way of Inhibition of Enzyme by Natural Inhibitors,” Journal of Biomolecular Structure & Dynamics 38, no. 13 (2020): 3757–71. 10.1080/07391102.2019.1667265.
  • Rashmi Kumari, Rajendra Kumar, and Andrew Lynn, “Open Source Drug Discovery Consortium g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations,” Journal of Chemical Information and Modeling 54, no. 7 (2014): 1951–62. 10.1021/ci500020m.
  • G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Physical Review B Condensed Matter 47, no. 1 (1993): 558–61. 10.1103/physrevb.47.558.
  • G. Kresse and J. Furthmuller, “Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-Wave Basis Set ,” Physical Review. B, Condensed Matter 54, no. 16 (1996): 11169–86. 10.1103/physrevb.54.11169.
  • G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector,” Physical Review B 59, no. 3 (1999): 1758–75. 10.1103/physrevc.59.1758.
  • P. E. Blochl, “Projector Augmented-Wave Method,” Physical Review 50 (1994): 17953. 10.1103/physrevb.50.17953.
  • K. Haruna, V. S. Kumar, Y. S. Mary, S. A. Popoola, R. Thomas, M. S. Roxy, and A. A. Al-Saadi, “Conformational Profile, Vibrational Assignments, NLO Properties and Molecular Docking of Biologically Active herbicide1,1-dimethyl-3-phenylurea ,” Heliyon 5, no. 6 (2019): https://doi.org/10.1016/j.heliyon.2019.e01987
  • J. S. Al-Otaibi, A. H. Almuqrin, Y. S. Mary, and R. Thomas, “Modeling the Conformational Presence, Spectroscopic Properties, UV Light Harvesting Efficiency, Biological Receptor Inhibitory Ability and Other Physic-Chemical Properties of Five Imidazole Derivatives Using Quantum Mechanical and Molecular Mechanics Tools,” Journal of Molecular Liquids 310 (2020): https://doi.org/10.1016/j.molliq.2020.112871
  • R. I. Al-Wabli, K. S. Resmi, Y. S. Mary, C. Y. Panicker, M. I. Attia, A. A. El-Emam, and C. Van Alsenoy, “Vibrational Spectroscopic Studies, Fukui Functions, HOMO-LUMO, NLO, NBO Analysis and Molecular Docking Stud© (E)-1-(1,3-Benzodioxol-5-yl)-4,4-Dimethylpent-1-en-3-One, a Potential Precursor to Bioactive Agents,” Journal of Molecular Structure. 1123 (2016): 375–83. https://doi.org/10.1016/j.molstruc.2016.07.044
  • Y. S. Mary, Y. S. Mary, K. S. Resmi, and R. Thomas, “DFT and Molecular Docking Investigations of Oxicam derivatives,” Heliyon 5, no. 7 (2019): https://doi.org/10.1016/j.heliyon.2019.e02175
  • V. V. Aswathy, S. Alper-Hayta, G. Yalcin, Y. S. Mary, C. Y. Panicker, P. J. Jojo, F. Kaynak-Onurdag, S. Armakovic, S. J. Armakovic, I. Yildiz, et al, “Modification of Benzoxazole Derivative by Bromine-Spectroscopic, Antibacterial and Reactivity Study Using Experimental and Theoretical Procedures,” Journal of Molecular Structure 1141 (2017): 495–511. 10.1016/j.molstruc.2017.04.010.
  • E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold N. B. O. Version, 3.1, TCI (Madison: University of Wisconsin, , 1998).
  • S. Beegum, Y. S. Mary, H. T. Varghese, C. Y. Panicker, S. Armakovic, S. J. Armakovic, J. Zitko, M. Dolezal, and C. Van Alsenoy, “Vibrational Spectroscopic Analysis of Cyanopyrazine-2-Carboxamide Derivatives and Investigation of Their Reactive Properties by DFT Calculations and Molecular Dynamics Simulations,” Journal of Molecular Structure. 1131 (2017): 1–15. https://doi.org/10.1016/j.molstruc.2016.11.044
  • G. Henkelman, A. Arnaldsson, and H. Jonsson, “A Fast and Robust Algorithm for Bader Decomposition of Charge Density,” Computational Materials Science. 36 (2006): 254–360. https://doi.org/10.1016/j.commatsci.2005.04.010
  • ’. M. O'boyle, A. L. Tenderholt, and K. M. Langner, “Cclib: A Library for Package-Independent Computational Chemistry Alogorithms,” Journal of Computational Chemistry 29, no. 5 (2008): 839–45. 10.1002/jcc/20823.
  • K. Sangeetha, S. R. Rajina, M. K. Marchewka, and J. Binoy, “The Study of Inter and Intramolecular Hydrogen Bonds of NLO Crystal Melaminium Hydrogen Malonate Using DFT Simulation, AIM Analysis and Hirshfeld Surface Analysis,” Materials Today: Proceedings 25 (2020): 307–15. 10.1016/j.matpr.2020.01.526.
  • P. Srinivasan, S. N. Asthana, R. B. Pawar, and P. Kumaradhas, “A Theoretical Charge Density Study on Nitrogen-Rich 4,4’,5,5’-Tetranitro-2,2’-bi-1H-Imidazole (TNBI) Energetic Molecule,” Structural Chemistry 22, no. 6 (2011): 1213–20. 10.1007/s11224-011-9815-y.
  • F. Farsinia, M. Dehestani, and M. Molaei, “Investigation of Structural Stability, Electronic Properties of S-Doped CdSe Using ab Initio Calculations,” Structural Chemistry 31, no. 2 (2020): 701–8. 10.1007/s11224-019-01449-z
  • S. G. Neogi, A. Das, and P. Chaudhury, “Investigation of Plausible Mechanistic Pathways in Hydrogenation of η5-(C5H5)2Ta(H)=CH2: An Analysis Using DFT and AIM Techniques,” Journal of Molecular Modeling 20 (2014): 2132. 10.1007/s00894-014-2132-9.
  • G. G. Sheeba, D. Usha, M. Amalanathan, M. Sony, and M. Mary, “Identification of Structure Activity Relation of a Synthetic Drug 2,6-Pyridine Dicarbonitrile Using Experimental and Theoretical Investigation,” Wutan Huatan Jisuan Jishu XVI, no. XI (2020): 89–113. 10.37896/whjj16.11/341.
  • J. Zhou, L. Zhu, J. Chen, W. Wang, R. Zhang, Y. Li, Q. Zhang, and W. Wang, “Degradation Mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study ,” The Science of the Total Environment 709 (2020): 135897. 10.1016/j.scitotenv.2019.135897.
  • C. Sivakumar, V. Balachandran, B. Narayana, V. V. Salian, B. Revathi, N. Shanmugapriya, and K. Vanasundari, “Molecular Spectroscopic Investigation, Quantum Chemical, Molecular Docking and Biological Evaluation of 2-(4-Chlorophenyl)-1-[3-(4-Chlorophenyl)-5-[4-(Propan-2-yl)Phenyl-3,5-Dihydro-1H-Pyrazole-yl]Ethanone,” Journal of Molecular Structure 1224 (2021): 129010. 10.1016/j.molstruc.2020.129010.
  • M. Maria Julie, T. Prabhu, E. Elamuruguporchelvi, Fazilath Basha Asif, S. Muthu, and Ahmad Irfan, “Structural (Monomer and Dimer), Wavefunctional, NCI Analysis in Aqueous Phase, Electronic and Excited State Properties in Different Solvent Atmosphere© 3-{(E)-[(3,4-Dichlorphenyl)Imino]Methyl}Benzene-1,2-Diol,” Journal of Molecular Liquids 336 (2021): 10.1016/j.molliq.2021.116335.
  • O. Trott and A. J. Olson, “AutoDockVina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading,” Journal of Computational Chemistry 31 (2009): 461. 10.1002/jcc.21334.
  • K. B. Benzon, Y. S. Mary, H. T. Varghese, C. Y. Panicker, S. Armakovic, S. J. Armakovic, K. Pradhan, A. K. Nanda, and C. Van Alsenoy, “Spectroscopic, DFT, Molecular Dynamics and Molecular Docking Study of 1-Butyl-2-(4-Hydroxyphenyl)-4,5-Dimethyl-Imidazole 3-Oxide,” Journal of Molecular Structure 1134 (2017): 330–44. 10.1016/j.molstruc.2016.12.100.
  • M. Sugishima, Y. Okamoto, M. Noguchi, T. Kohchi, H. Tamiaki, and K. Fukuyama, “Crystal Structures of the Substrate-Bound Forms of Red Chlorophyll Catabolite Reductase: Implications for Site-Specific and Stereospecific Reaction ,” Journal of Molecular Biology 402, no. 5 (2010): 879–91. 10.1016/j.jmb.2010.08.021.
  • J. Zhou, Z. Huang, L. Zheng, Z. Hei, Z. Wang, B. Yu, L. Jiang, J. Wang, and P. Fang, “Inhibition of plasmodium falciparum Lysyl-tRNA Synthetase via an Anaplastic Lymphoma Kinase Inhibitor,” Nucleic Acids Research 48, no. 20 (2020): 11566–76. https://doi.org/10.1093/nar/gkaa862
  • K. H. Kim, B. M. Kwon, A. G. Myers, and D. C. Rees, “Crystal Structure of Neocarzinostatin, an Antitumor Protein-Chromophore Complex,” Science 262, no. 5136 (1993): 1042–6. 10.1126/science.8235619.
  • P. J. Farrell, J. Matuszkiewicz, D. Balakrishna, S. Pandya, M. S. Hixon, R. Kamran, S. Chu, J. D. Lawson, K. Okada, A. Hori, et al, “MET Tyrosine Kinase Inhibition Enhances the Antitumor Efficacy of an HGF Antibody,” Molecular Cancer Therapeutics 16, no. 7 (2017): 1269–78. 10.1158/1535-7163.MCT-16-0771.
  • K. Bjerregaard-Andersen, H. Johannesen, N. Abdel-Rahman, J. E. Heggelund, H. M. Hoas, F. Abraha, P. A. Bousquet, L. S. Hoydahl, D. Burschowsky, G. Rojas et al, “Crystal Structure of an L Chain Optimised 14F7 anti-Ganglioside Fv Suggests a Unique Tumour-Specificity through an Unusual H-Chain CDR3 Architecture,” Scientific Reports 8, no. 1 (2018): 10836. 10.1038/s41598-018-28918-5.
  • R. S. Goydel, J. Weber, H. Peng, J. Qi, J. Soden, J. Freeth, H. Park, and C. Rader, “Affinity Maturation, Humanization and co-Crystallization of a Rabbit anti-Human ROR2 Monoclonal Antibody for Therapeutic Applications,” Journal of Biological Chemistry 295, no. 18 (2020): 5995–6006. 10.1074/jbc.RA120.012791.
  • F. Fazil, M. Smitha, Y. S. Mary, Y. S. Mary, V. Chandramohan, N. Kumar, R. Pavithran, and C. Van Alsenoy, “Structural (SC-XRD), Spectroscopic, DFT, MD Investigations and Molecular Docking Studies of a Hydrazone Derivative,” Chemical Data Collections 30 (2020): 100588. 10.1016/j.cdc.2020.100588.
  • Y. Sheena Mary, Y. Shyma Mary, Vivek Chandramohan, Naveen Kumar, C. Van Alsenoy, and Maria Cristina Gamberini, “DFT and MD Simulations and Molecular Docking of co-Crystals of Octafluoro-1,4-Diiodobutane with Phenazine and Acridine,” Structural Chemistry 31, no. 6 (2020): 2525–31. 10.1007/s11224-020-01616-7.
  • M. Smitha, Y. S. Mary, Y. S. Mary, G. Serdaroglu, P. Chowdhury, M. Rana, H. Umamahesvari, B. K. Sarojini, B. J. Mohan, and R. Pavithran, “Modeling the DFT Structural and Reactivity Studies of a Pyrimidine-6-Carboxylate Derivative with Reference to Its Wavefunction-Dependent, MD Simulations and Evaluation for Potential Antimicrobial Activity,” Journal of Molecular Structure 1237 (2021): 130397. 10.1016/j.molstruc.2021.130397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.