228
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Unexplored Potential of Polyaniline Embedded Barium Chloride Nanocomposite in the Synthesis of Styrylquinoxalin-2(1H)-Ones

, &
Pages 2104-2122 | Received 02 Nov 2021, Accepted 31 Jan 2022, Published online: 18 Feb 2022

References

  • M. A. Harmer and Q. Sun, “Solid Acid Catalysis Using Ion-Exchange Resins,” Applied Catalysis A: General 221, no. 1-2 (2001): 45–62.
  • J. M. Fraile, Heterogenized Homogeneous Catalysts for Fine Chemicals Production, 1st ed. (Dordrecht: Springer, 2010), 65–121.
  • A. Taher, D. -J. Lee, and I. -M. Lee, “Graphene-Supported Palladium Complex: A Highly Efficient, Robust and Recyclable Catalyst for the Suzuki–Miyaura Cross-Coupling of Various Aryl Halides,” Synlett 27, no. 16 (2016): 2333–8.
  • S. P. Gadekar, G. T. Pawar, R. R. Magar, and M. K. Lande, “Preparation, Characterizations of TS-1 Zeolite: An Effective Solid Acid Catalyst for the Synthesis of 1, 3, 5-Triaryl-2-Pyrazolins,” Polycyclic Aromatic Compounds 40, no. 1 (2020): 126–34.
  • M. Makhsous, F. Shirini, M. Seddighi, and M. Mazloumi, “Efficient Synthesis of Pyrimido[1,2-a]Benzimidazoles and Ethyl Pyrimido[1,2-a]Benzimidazole-3-Carboxylates Using Brönsted Acidic Ionic Liquid Supported on Nanoporous Na+-Montmorillonite,” Polycyclic Aromatic Compounds 40, no. 2 (2020): 494–501.
  • M. Mousapour, F. Shirini, and M. Abedini, “Efficient Synthesis of 2H-Indazolo[2,1- b]Phthalazine-Triones Using [PVPH]ClO4 as a Modified Polymeric Catalyst,” Polycyclic Aromatic Compounds 41, no. 2 (2021): 419–26.
  • A. Maleki, P. Ravaghi, and H. Movahed, “Green Approach for the Synthesis of Carboxycoumarins by Using a Highly Active Magnetically Recyclable Nanobiocomposite via Sustainable Catalysis,” Micro & Nano Letters 13, no. 5 (2018): 591–4.
  • A. Maleki, P. Ravaghi, M. Aghaei, and H. Movahed, “A Novel Magnetically Recyclable Silver-Loaded Cellulosebased Bionanocomposite Catalyst for Green Synthesis of Tetrazolo[1,5-a]Pyrimidines,” Research on Chemical Intermediates 43, no. 10 (2017): 5485–94.
  • A. Maleki, H. Movahed, and P. Ravaghi, “Magnetic Cellulose/Ag as a Novel Eco-friendly Nanobiocomposite to Catalyze Synthesis of Chromene-Linked Nicotinonitriles,” Carbohydrate Polymers 156 (2017): 259–67.
  • M. S. Esmaeili, M. R. Khodabakhshi, A. Maleki, and Z. Varzi, “Green, Natural and Low Cost Xanthum Gum Supported Fe3O4 as a Robust Biopolymer Nanocatalyst for the One-Pot Synthesis of 2-Amino-3-Cyano-4H-Pyran Derivatives,” Polycyclic Aromatic Compounds 41, no. 9 (2021): 1953–71.
  • A. Maleki, M. Aghaei, and T. Kari, “Facile Synthesis of 7-Aryl-benzo[h]tetrazolo[5,1-b]quinazoline-5,6-dione Fused Polycyclic Compounds by Using a Novel Magnetic Polyurethane Catalyst,” Polycyclic Aromatic Compounds 39, no. 3 (2019): 266–78.
  • A. Maleki, “An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles,” Polycyclic Aromatic Compounds 38, no. 5 (2018): 402–9.
  • A. Maleki, “One-Pot Three-Component Synthesis of Pyrido[2’,1’:2,3]imidazo[4,5- c]isoquinolines Using Fe3O4@SiO2–OSO3H as an Efficient Heterogeneous Nanocatalyst,” RSC Advances 4, no. 109 (2014): 64169–73.
  • A. Maleki, “Fe3O4/SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines,” Tetrahedron 68, no. 38 (2012): 7827–33.
  • A. Maleki, “One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles,” Tetrahedron Letters 54, no. 16 (2013): 2055–9.
  • A. Maleki, “Synthesis of Imidazo[1,2-a]pyridines Using Fe3O4@SiO2 as an Efficient Nanomagnetic Catalyst via a One-Pot Multicomponent Reaction,” Helvetica Chimica Acta 97, no. 4 (2014): 587–93.
  • S. Khodsetan and F. Moeinpour, “Cu(II)-Containing Nano-Silica Triazine Based Dendrimer: A Green and Proficient Catalyst for the Synthesis of Propargylamines,” Polycyclic Aromatic Compounds 40 (2020): 1–13.
  • A. Maleki, “Green Oxidation Protocol: Selective Conversions of Alcohols and Alkenes to Aldehydes, Ketones and Epoxides by Using a New Multiwall Carbon Nanotube-Based Hybrid Nanocatalyst via Ultrasound Irradiation,” Ultrasonics Sonochemistry 40, no. Pt A (2018): 460–4.
  • P. Santhosh, A. Gopalan, and K.-P. Lee, “Gold Nanoparticles Dispersed Polyaniline Grafted Multiwall Carbon Nanotubes as Newer Electrocatalysts: Preparation and Performances for Methanol Oxidation,” Journal of Catalysis 238, no. 1 (2006): 177–85.
  • T. Amaya, D. Saio, and T. Hirao, “Template Synthesis of Polyaniline/Pd Nanoparticle and Its Catalytic Application,” Tetrahedron Letters 48, no. 15 (2007): 2729–32.
  • U. Mandi, A. S. Roy, B. Banerjee, and S. M. Islam, “A Novel Silver Nanoparticle Embedded Mesoporous Polyaniline (mPANI/Ag) Nanocomposite as a Recyclable Catalyst in the Acylation of Amines and Alcohols under Solvent Free Conditions,” RSC Advances 4, no. 80 (2014): 42670–81.
  • P. R. Likhar, M. L. Kantam, and S. Bhargava, “Polyaniline-Supported Metal Catalysts for Green Synthesis,” Indian Journal of Chemistry 51A (2012): 155–65.
  • H. Bai and G. Shi, “Gas Sensors Based on Conducting Polymers,” Sensors 7, no. 3 (2007): 267–307.
  • S. Tian, J. Liu, T. Zhu, and W. Knoll, “Polyaniline/Gold Nanoparticle Multilayer Films: Assembly, Properties, and Biological Applications,” Chemistry of Materials 16, no. 21 (2004): 4103–8.
  • R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, “Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory,” Nano Letters 5, no. 6 (2005): 1077–80.
  • A. Kalendová, D. Veselý, I. Sapurina, and J. Stejskal, “Anticorrosion Efficiency of Organic Coatings Depending on the Pigment Volume Concentration of Polyaniline Phosphate,” Progress in Organic Coatings 63, no. 2 (2008): 228–37.
  • P. K. Khanna, N. Singh, S. Charan, and K. Viswanath, “Synthesis of Ag/Polyaniline Nanocomposite via an In Situ Photo-Redox Mechanism,” Materials Chemistry and Physics 92, no. 1 (2005): 214–9.
  • T. K. Sarma and A. Chattopadhyay, “Reversible Encapsulation of Nanometer-Size Polyaniline and Polyaniline-Au-Nanoparticle Composite in Starch ,” Langmuir: The ACS Journal of Surfaces and Colloids 20, no. 11 (2004): 4733–7.
  • M. A. Breimer, G. Yevgeny, S. Sy, and O. A. Sadik, “Incorporation of Metal Nanoparticles in Photopolymerized Organic Conducting Polymers: A Mechanistic Insight,” Nano Letters 1, no. 6 (2001): 305–8.
  • T. K. Sarma and A. Chattopadhyay, “One Pot Synthesis of Nanoparticles of Aqueous Colloidal Polyaniline and Its Au-Nanoparticle Composite from Monomer Vapor,” The Journal of Physical Chemistry A 108, no. 39 (2004): 7837–42.
  • M. Sivakumar and A. Gedanken, “A Sonochemical Method for the Synthesis of Polyaniline and Au–Polyaniline Composites Using H2O2 for Enhancing Rate and Yield,” Synthetic Metals 148, no. 3 (2005): 301–6.
  • Y. Zhou, H. Itoh, T. Uemura, K. Naka, and Y. Chujo, “Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a π-Conjugated Polymer,” Langmuir 18, no. 1 (2002): 277–83.
  • S. Palaniappan and V. Nivasu, “Emulsion Polymerization Pathway for Preparation of Organically Soluble Polyaniline Sulfate,” New Journal of Chemistry 26, no. 10 (2002): 1490–4.
  • A. G. MacDiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, “Polyaniline: A New Concept in Conducting Polymers,” Synthetic Metals 18, no. 1-3 (1987): 285–90.
  • M. Joubert, M. Bouhadid, D. Begue, P. Iratcabal, N. Redon, J. Desbrieres, and S. Reynaud, “Conducting Polyaniline Composite: From Syntheses in Waterborne Systems to Chemical Sensor Devices,” Polymer 51, no. 8 (2010): 1716–22.
  • M. Nandi, R. Gangopadhyay, and A. Bhaumik, “Mesoporous Polyaniline Having High Conductivity at Room Temperature,” Microporous and Mesoporous Materials 109, no. 1-3 (2008): 239–47.
  • D. C. Trivedi, Handbook of Organic Conductive Molecules and Polymers (Chichester; Wiley, 1997), 2: 505–72.
  • M. L. Kantam, M. Roy, S. Roy, B. Sreedhar, S. S. Madhavendra, B. M. Choudary, and R. L. De, “Polyaniline Supported Palladium Catalyzed Suzuki–Miyaura Cross-Coupling of Bromo- and Chloroarenes in Water,” Tetrahedron 63, no. 33 (2007): 8002–9.
  • E. Eskandari, M. Kosari, M. H. D. A. Farahani, N. D. Khiavi, M. Saeedikhani, and R. Katal, and M. Zarinejad, “A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes,” Separation and Purification Technology 231 (2020): 115901.
  • S. Palaniappan, C. Saravanan, C. A. Amarnath, and V. J. Rao, “Polyaniline Salts and Complexes as Catalyst in Bisindole Synthesis,” Catalysis Letters 97, no. 1/2 (2004): 77–81.
  • H. A. Patel, A. L. Patel, and A. V. Bedekar, “Polyaniline Coated on Celite, a Heterogeneous Support for Palladium: Applications in Catalytic Suzuki and One-Pot Suzuki-Aldol Reactions,” New Journal of Chemistry 40, no. 10 (2016): 8935–45.
  • C. Srinivas, C. N. S. S. P. Kumar, V. J. Rao, and S. Palaniappan, “Efficient, Convenient and Reusable Polyaniline-Sulfate Salt Catalyst for the Synthesis of Quinoxaline Derivatives,” Journal of Molecular Catalysis A: Chemical 265, no. 1-2 (2007): 227–30.
  • C. L. Devi, V. J. Rao, and S. Palaniappan, “PANI-HBF4: A Reusable Polymer-Based Solid Acid Catalyst for Three Component, One Pot Synthesis of 3-Substituted Amino Methyl Indoles under Solvent-Free Conditions,” Synthetic Communications 42, no. 11 (2012): 1593–603.
  • B. Rajender, G. Ramesh, and S. Palaniappan, “Polyaniline Coated Glass/SS Sheet: Novel, Convenient, Efficient, Reusable and Green Catalyst,” Catalysis Communications 43 (2014): 93–6.
  • V. R. Choudhary, R. Jha, and P. Jana, “Epoxidation of Styrene by TBHP to Styrene Oxide as a Highly Active/Selective and Reusable Solid Catalyst,” Green Chemistry 8, no. 8 (2006): 689–90.
  • S. Khodabakhshi, “Barium Dichloride as a Powerful and Inexpensive Catalyst for the Pechmann Condensation without Using Solvent,” Organic Chemistry International 2012 (2012): 1–5.
  • M. Abdoli-Senejani, M. Hasani, and T. M. Isfahani, “One-Pot Synthesis of 3, 4- Dihydropyrimidin-2(1H)-Ones Catalyzed by Barium Chloride,” Journal of Chemical and Pharmaceutical Research 8, (2016): 214.
  • P. Stegner, C. Färber, U. Zenneck, C. Knüpfer, J. Eyselein, M. Wiesinger, and S. Harder, “Metallic Barium: A Versatile and Efficient Hydrogenation Catalyst,” Angewandte Chemie (International Ed. in English) 60, no. 8 (2021): 4252–8.
  • R. S. Varma, K. P. Naicker, and P. J. Liesen, “Microwave-Accelerated Crossed Cannizzaro Reaction Using Barium Hydroxide under Solvent-Free Conditions,” Tetrahedron Letters 39, no. 46 (1998): 8437–40.
  • J. V. Sinisterra, A. Fuentes, and J. M. Marinas, “Barium Hydroxide as Catalyst in Organic Reactions. 17. Interfacial Solid-Liquid Wittig-Horner Reaction under Sonochemical Conditions,” The Journal of Organic Chemistry 52, no. 17 (1987): 3875–9.
  • M. R. M. Shafiee and R. Moloudi, “Barium Chloride Dispersed on Silica Gel Nanoparticles: An Efficient Catalyst for the Preparation of 2,4,6-Triarylpyridines under Solvent-Free Conditions,” Journal of Chemical Research 35, no. 5 (2011): 294–7.
  • M. R. M. Shafiee, “Silica-Supported Barium Chloride (SiO2–BaCl2) - Efficient and Heterogeneous Catalyst for the Environmentally Friendly Preparation of N,N’- Alkylidene Bisamides under Solvent-Free Conditions,” Canadian Journal of Chemistry 89 (2011): 555–61.
  • H. Taghrir, M. Ghashang, and M. N. Biregan, “Preparation of 1-Amidoalkyl-2-Naphthol Derivatives Using Barium Phosphate Nano-Powders,” Chinese Chemical Letters 27, no. 1 (2016): 119–26.
  • R. Sarges and J. W. Lyga, “Synthesis and Aldose Reductase Inhibitory Activity of N-1,N-4- Disubstituted 3,4-Dihydro-2(1H)-Quinoxalinone Derivatives,” Journal of Heterocyclic Chemistry 25, no. 5 (1988): 1475–9.
  • A. Shaabani, A. Maleki, H. Mofakham, and H. R. Khavasi, “Novel Isocyanide-Based Three-Component Synthesis of 3,4-Dihydroquinoxalin-2-Amine Derivatives,” Journal of Combinatorial Chemistry 10, no. 2 (2008): 323–6.
  • A. Shaabani and A. Maleki, “Green and Efficient Synthesis of Quinoxaline Derivatives via Ceric Ammonium Nitrate Promoted and In Situ Aerobic Oxidation of α-Hydroxy Ketones and α-Keto Oximes in Aqueous Media,” Chemical & Pharmaceutical Bulletin 56, no. 1 (2008): 79–81.
  • A. H. Abbas, A. R. Al-Marhabi, S. I. Eissa, and Y. A. Ammar, “Molecular Modeling Studies and Synthesis of Novel Quinoxaline Derivatives with Potential Anticancer Activity as Inhibitors of c-Met Kinase,” Bioorganic & Medicinal Chemistry 23, no. 20 (2015): 6560–72.
  • Z. Liu, S. Yu, D. Chen, G. Shen, Y. Wang, L. Hou, D. Lin, J. Zhang, and F. Ye, “Design, Synthesis, and Biological Evaluation of 3-Vinyl-Quinoxalin-2(1H)-One Derivatives as Novel Antitumor Inhibitors of FGFR1,” Drug Design,” Drug Design, Development and Therapy 10 (2016): 1489–500.
  • X. Qin, X. Hao, H. Han, S. Zhu, Y. Yang, B. Wu, S. Hussain, S. Parveen, C. Jing, B. Ma, et al, “Design and Synthesis of Potent and Multifunctional Aldose Reductase Inhibitors Based on Quinoxalinones,” Journal of Medicinal Chemistry 58, no. 3 (2015): 1254–67. − 
  • S. Wagle, A. V. Adhikari, and N. S. Kumari, “Synthesis of Some New 4-Styryltetrazolo[1,5-a]Quinoxaline and 1-Substituted-4-Styryl[1,2,4]Triazolo[4,3-a]Quinoxaline Derivatives as Potent Anticonvulsants ,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 1135–43.
  • E. Kamau, T. Meehan, M. D. Lavine, G. Arrizabalaga, and G. M. Wilson, and J. Boyle, “A Novel Benzodioxole-Containing Inhibitor of Toxoplasma gondii Growth Alters the Parasite Cell Cycle,” Antimicrobial Agents and Chemotherapy 55, no. 12 (2011): 5438–51.
  • Y. Ji, X. Chen, H. Chen, X. Zhang, Z. Fan, L. Xie, B. Ma, and C. Zhu, “Designing of Acyl Sulphonamide Based Quinoxalinones as Multifunctional Aldose Reductase Inhibitors,” Bioorganic & Medicinal Chemistry 27, no. 8 (2019): 1658–69.
  • L. Shi, J. Zhou, J. Wu, J. Cao, Y. Shen, H. Zhou, and X. Li, “Quinoxalinone (Part II). Discovery of (Z)-3-(2-(Pyridin-4-Yl)Vinyl)Quinoxalinone Derivates as Potent VEGFR-2 Kinase Inhibitors,” Bioorganic & Medicinal Chemistry 24, no. 8 (2016): 1840–52.
  • M. M. Ali, M. M. F. Ismail, M. S. A. El-Gaby, M. A. Zahran, and Y. A. Ammar, “Synthesis and Antimicrobial Activities of Some Novel Quinoxalinone Derivatives,” Molecules 5, no. 12 (2000): 864–73.
  • M. M. Badran, A. A. Moneer, H. M. Refaat, and A. A. J. El-Malah, “Synthesis and Antimicrobial Activity of Novel Quinoxaline Derivatives,” Journal of the Chinese Chemical Society 54, no. 2 (2007): 469–78.
  • M. N. Noolvi, H. M. Patel, V. Bhardwaj, and A. Chauhan, “Synthesis and in Vitro Antitumor Activity of Substituted Quinazoline and Quinoxaline Derivatives: Search for Anticancer Agent,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 2327–46.
  • E. P. da Costa, S. E. Coelho, A. H. de Oliveira, R. M. Araújo, L. N. Cavalcanti, J. B. Domingos, and F. G. Menezes, “Multicomponent Synthesis of Substituted 3-Styryl-1H-Quinoxalin-2-Ones in an Aqueous Medium,” Tetrahedron Letters 59, no. 44 (2018): 3961–4.
  • S. Mahajan, N. Slathia, V. K. Nuthakki, S. B. Bharate, and K. K. Kapoor, “Malononitrile-Activated Synthesis and Anticholinesterase Activity of Styrylquinoxalin-2(1H)-Ones,” RSC Advances 10, no. 27 (2020): 15966–75.
  • D. Kour, A. Gupta, K. K. Kapoor, V. K. Gupta, Rajnikant, D. Singh, and P. Das, “Iodine- NH4OAc Mediated Regioselective Synthesis of 2-Aroyl-3-Arylimidazo[1,2-a]Pyridines from 1,3-Diaryl-Prop-2-en-1-Ones,” Organic and Biomolecular Chemistry 16 (2018): 1330–6.
  • A. Gupta, D. Kour, V. K. Gupta, and K. K. Kapoor, “Graphene Oxide Mediated Solvent-Free Three Component Reaction for the Synthesis of 1-Amidoalkyl-2-Naphthols and 1,2-Dihydro-1-Arylnaphth[1,2-e][1,3]Oxazin-3-Ones,” Tetrahedron Letters 57, no. 43 (2016): 4869–72.
  • D. Kour, S. Sasan, and K. K. Kapoor, “Graphene Oxide: An Efficient Carbocatalyst for the Solvent-Free Synthesis of 2-(Substituted Benzoyl)-3-(Substituted Phenyl)Imidazo[1,2- a]Pyridines,” Journal of Chemical Sciences 132, no. 1 (2020): 1–12.
  • S. Kumar, and K. K. Kapoor, “Unprecedented Reaction between Ethyl a-Cyanocinnamate and o-Phenylenediamine: Development of an Efficient Method for the Transfer Hydrogenation of Electronically Depleted Olefins,” Synlett 2007, no. 18 (2007): 2809–14.
  • V. Sharma, N. Slathia, S. Mahajan, K. K. Kapoor, and V. K. Gupta, “Synthesis, Characterization, Crystal Structure, Molecular Docking Analysis and Other Physico-Chemical Properties of (E)-2-(3,4- Dimethoxystyryl)Quinoline,” Polycyclic Aromatic Compounds (2021): 1–25. doi: 10.1080/10406638.2021.1996409
  • L. M. Gan, L. H. Zhang, H. S. O. Chan, and C. H. Chew, “Preparation of Conducting Polyaniline-Coated Barium Sulfate Nanoparticles in Inverse Microemulsions,” Materials Chemistry and Physics 40, no. 2 (1995): 94–8.
  • N. Gospodinova, and L. Terlemezyan, “Conducting Polymers Prepared by Oxidative Polymerization: Polyaniline,” Progress in Polymer Science 23, no. 8 (1998): 1443–84.
  • J. Vidya, and P. Balamurugan, “Synthesis, Structural, Morphological and Optical Characterization of Polyaniline Hydrochloride/Cerium Oxide Nanocomposite,” Materials Today: Proceedings 8 (2019): 223–30.
  • Z. Zhang, M. Wan, and Y. Wei, “Highly Crystalline Polyaniline Nanostructures Doped with Dicarboxylic Acids,” Advanced Functional Materials 16, no. 8 (2006): 1100–4.
  • G. R. Saad, A. A. Ezz, and H. A. Ahmed, “Cure Kinetics, Thermal Stability, and Dielectric Properties of Epoxy/Barium Ferrite/Polyaniline Composites,” Thermochimica Acta 599 (2015): 84–94.
  • A. Lodha, S. M. Kilbey, P. C. Ramamurthy II, and R. V. J. Gregory, “Effect of Annealing on Electrical Conductivity and Morphology of Polyaniline Films,” Journal of Applied Polymer Science 82, no. 14 (2001): 3602–10.
  • L. Abell, S. J. Pomfret, P. N. Adams, and A. P. Monkman, “Thermal Studies of Doped Polyaniline,” Synthetic Metals 84, no. 1-3 (1997): 127–8.
  • R. K. Paul, V. Vijayanathan, and C. K. S. Pillai, “Meltrsolution Processable Conducting Polyaniline: doping Studies with a Novel Phosphoric Acid Ester,” Synthetic Metals 104, no. 3 (1999): 189–95.
  • E. Erdem, M. Karakışla, and M. Saçak, “The Chemical Synthesis of Conductive Polyaniline Doped with Dicarboxylic Acids,” European Polymer Journal 40, no. 4 (2004): 785–91.
  • J. Liang, B. Yang, C.-Y. Zhong, J. Zhang, J. He, Y. Chen, and Z.-Q. Liu, “A Rapid in Situ Synthesis of Wide-Spectrum CD@BaCl2 Phosphors via anti-Solvent Recrystallization for White LEDs,” Inorganic Chemistry Frontiers 7, no. 24 (2020): 4845–53.
  • P. R. Likhar, R. Arundhathi, S. Ghosh, and M. L. Kantam, “Polyaniline Nanofiber Supported FeCl3: An Efficient and Reusable Heterogeneous Catalyst for the Acylation of Alcohols and Amines with Acetic Acid,” Journal of Molecular Catalysis A: Chemical 302, no. 1-2 (2009): 142–9.
  • V. V. Chabukswar, K. N. Handore, S. V. Bhavsar, A. S. Horne, S. Dallavalle, V. Gaikwad, and K. C. Mohite, “Conducting Polyaniline is an Efficient Catalyst for Synthesis of 3,4-Dihydropyrimidin-2-(1H)-One Derivative under Solvent-Free Conditions,” Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 50, no. 4 (2013): 411–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.