487
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Structure, Experimental and Theoretical Vibrational Spectroscopy, (HOMO-LUMO, NBO) Investigation, (RDG, AIM) Analysis, (MEP, NLO) Study and Molecular Docking of Ethyl-2-{[4-Ethyl-5-(Quinolin-8-yloxyMethyl)-4H-1,2,4-Triazol-3-yl] Sulfanyl} Acetate

, , ORCID Icon, , , & show all
Pages 2152-2176 | Received 07 Dec 2021, Accepted 01 Feb 2022, Published online: 20 Feb 2022

References

  • V. T. D'Souza, J. Nayak, D. E. D'Mello, and P. Dayananda, “Synthesis and Characterization of Biologically Important Quinoline Incorporated Triazole Derivatives,” Journal of Molecular Structure 1229 (2021): 129503.
  • L. Yurttaş, A. Kubilay, A. E. Evren, İ. Kısacık, and H. K. Gençer, “Synthesis of Some Novel 3,4,5-Trisubstituted Triazole Derivatives Bearing Quinoline Ring and Evaluation of Their Antimicrobial Activity,” Phosphorus, Sulfur, and Silicon and the Related Elements 195, no. 9 (2020): 767–73.
  • K. D. Thomas, A. V. Adhikari, and N. S. Shetty, “Design, Synthesis and Antimicrobial Activities of Some New Quinoline Derivatives Carrying 1,2,3-Triazole Moiety,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 3803–10.
  • N. Boechat, G. Ferreira, L. C. S. Pinheiro, A. M. L. Jesus, M. M. M. Leite, C. C. S. Júnior, A. C. C. Aguiar, I. M. Andrade, and A. U. Krettli, “New Compounds Hybrids 1H-1,2,3-Triazole-Quinoline against Plasmodium falciparum,” Chemical Biology & Drug Design 84, no. 3 (2014): 325–32.
  • X.-M. Chu, C. Wang, W.-L. Wang, L.-L. Liang, W. Liu, K.-K. Gong, and K.-L. Sun, “Triazole Derivatives and Their Antiplasmodial and Antimalarial Activities,” European Journal of Medicinal Chemistry 166 (2019): 206–23.
  • M. R. Jones, C. Dyrager, M. Hoarau, K. J. Korshavn, M. H. Lim, A. Ramamoorthy, and T. Storr, “Multifunctional Quinoline-Triazole Derivatives as Potential Modulators of Amyloid-β Peptide Aggregation,” Journal of Inorganic Biochemistry 158 (2016): 131–8.
  • J. Ramprasad, V. K. Sthalam, R. L. M. Thampunuri, S. Bhukya, R. Ummanni, S. Balasubramanian, and S. Pabbaraja, “Synthesis and Evaluation of a Novel Quinoline-Triazole Analogs for Antitubercular Properties via Molecular Hybridization Approach,” Bioorganic & Medicinal Chemistry Letters 29, no. 20 (2019): 126671.
  • S. Zhou, H. Liao, M. Liu, G. Feng, B. Fu, R. Li, M. Cheng, Y. Zhao, and P. Gong, “Discovery Andw Biological Evaluation of Novel 6,7-Disubstituted-4-(2-Fluorophenoxy)Quinoline Derivatives Possessing 1,2,3-Triazole-4-Carboxamide Moiety as c-Met Kinase Inhibitors,” Bioorganic & Medicinal Chemistry 22, no. 22 (2014): 6438–52.
  • A. M. Mohassab, H. A. Hassan, D. Abdelhamid, A. M. Gouda, B. G. M. Youssif, H. Tateishi, M. Fujita, M. Otsuka, and M. Abdel-Aziz, “Design and Synthesis of Novel Quinoline/Chalcone/1,2,4-Triazole Hybrids as Potent Antiproliferative Agent Targeting EGFR and BRAFV600E Kinases,” Bioorganic Chemistry 106 (2021): 104510.
  • O. Kourat, A. Djafri, N. Benhalima, Y. Megrouss, N. E. H. Belkafouf, R. Rahmani, J.-C. Daran, A. Djafri, and A. Chouaih, “Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Spectral Characterization, Reduced Density Gradient and Nonlinear Optical Investigation on (E)-N’-(4-Nitrobenzylidene)-2-(Quinolin-8-Yloxy) Acetohydrazide Monohydrate: A Combined Experimental and DFT Approach,” Journal of Molecular Structure 1222 (2020): 128952.
  • R. I. Bahoussi, A. Djafri, A. Chouaih, A. Djafri, and F. Hamzaoui, “Crystal Structure and Hirshfeld Surface Analysis of Ethyl 2-{[4-Ethyl-5-(Quinolin-8-Yloxymeth-yl)-4H-1,2,4-Triazol-3-yl]Sulfan-yl}Acetate,” Acta Crystallographica. Section E, Crystallographic Communications 73, no. Pt 2 (2017): 173–6.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, Revision A.I (Pittsburgh, PA: Gaussian, Inc., 2009).
  • R. H. Hertwig and W. Koch, “On the Parameterization of the Local Correlation Functional. What is Becke-3-LYP?” Chemical Physics Letters 268, no. 5–6 (1997): 345–51.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Condensed Matter 37, no. 2 (1988): 785–9.
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 6.1.1, Semichem Inc., Shawnee Mission, KS, 2019.
  • M. H. Jamróz, “Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 114 (2013): 220–30.
  • N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, “Cclib: A Library for Package-Independent Computational Chemistry Algorithms,” Journal of Computational Chemistry 29, no. 5 (2008): 839–45.
  • E. D. Glendening and F. Weinhold, “Natural Resonance Theory: II. Natural Bond Order and Valency,” Journal of Computational Chemistry 19, no. 6 (1998): 610–27.
  • T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33–8.
  • C. Jelsch, B. Guillot, A. Lagoutte, and C. Lecomte, “Advances in Proteins and Small Molecules. Charge Density Refinement Methods Using Software MoPro,” Journal of Applied Crystallography 38, no. 1 (2005): 38–54.
  • H. Arslan, U. Flörke, N. Külcü, and G. Binzet, “The Molecular Structure and Vibrational Spectra of 2-chloro-N-(diethylcarbamothioyl)benzamide by Hartree-Fock and density functional methods,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 68, no. 5 (2007): 1347–55.
  • F. Iwasaki and K. Akiba, “The Crystal and Molecular Structure of 3,4-Dimethyl-2,5-Diphenyl-3,4-Dihydro-3a-Thia-1,3,4,6-Tetraazapentalene,” Bulletin of the Chemical Society of Japan 57, no. 9 (1984): 2581–3.
  • R. I. Bahoussi, A. Djafri, A. Chouaih, A. Djafri, and F. Hamzaoui, “Crystal Structure and Hirshfeld Surface Analysis of Ethyl 2-{[4-Ethyl-5-(Quinolin-8-Yloxymeth-yl)-4H-1,2,4-Triazol-3-yl]Sulfan-yl}Acetate,” Acta Crystallographica Section E: Crystallographic Communications 73, no. Pt 2 (2017): 173–6.
  • V. Krishnakumar, S. Dheivamalar, R. J. Xavier, and V. Balachandran, “Analysis of Vibrational Spectra of 4-Amino-2,6-Dichloropyridine and 2-Chloro-3,5-Dinitropyridine Based on Density Functional Theory Calculations,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 65, no. 1 (2006): 147–54.
  • E. Vessally, E. Fereyduni, H. Shabrendi, and M. Esrafili, “One-Pot Synthesis, FT-IR and Density Functional Method (DFT) Studies on N-benzyl-N-Ethyl–N-[5-Nitro-2-(1,1,3,3-Tetramethylbutylamino)-1-Benzofuran-3-yl]Amine,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 116 (2013): 65–73.
  • N. Boukabcha, A. Djafri, Y. Megrouss, Ö. Tamer, D. Avcı, M. Tuna, N. Dege, A. Chouaih, Y. Atalay, A. Djafri, et al, “Synthesis, Crystal Structure, Spectroscopic Characterization and Nonlinear Optical Properties of (Z)-N’-(2,4-Dinitrobenzylidene)-2-(Quinolin-8-Yloxy) Acetohydrazide,” Journal of Molecular Structure 1194 (2019): 112–23.
  • P. Venkata Ramana Rao and G. R. Rao, “Vibrational Analysis of Substituted Phenols: Part I. Vibrational Spectra, Normal Coordinate Analysis and Transferability of Force Constants of Some Formyl-, Methoxy-, Formylmethoxy-, Methyl- and Halogeno-Phenols,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 58, no. 14 (2002): 3039–65.
  • M. M. Ismail, G. M. Morsy, H. M. Mohamed, M. A. M. El-Mansy, and M. M. A. Abd-Alrazk, “FT-IR Spectroscopic Analyses of 4-Hydroxy-1-Methyl-3-[2-Nitro-2-Oxoacetyl-2(1H)Quinolinone (HMNOQ),” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 113 (2013): 191–5.
  • M. I, Mm E.-N, K. Ma, Aa E.-B, W. Bd, and Ma E.-M, “On the Spectroscopic Analyses of Thioindigo Dye,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 113 (2013): 332–6.
  • M. M. El-Nahass, M. A. Kamel, A. A. El-Barbary, M. a M. El-Mansy, and M. Ibrahim, “FT-IR Spectroscopic Analyses of 3-Methyl-5-Pyrazolone (MP),” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 111 (2013): 37–41.
  • R. Y. Jin, X. H. Sun, Y. F. Liu, W. Long, W. T. Lu, and H. X. Ma, “Synthesis, Crystal Structure, IR, 1H NMR and Theoretical Calculations of 1,2,4-Triazole Schiff Base,” Journal of Molecular Structure. 1062 (2014): 13–20.
  • M. Kumru, V. Küçük, M. Kocademir, H. M. Alfanda, A. Altun, and L. Sarı, “Experimental and Theoretical Studies on IR, Raman, and UV–Vis Spectra of Quinoline-7-Carboxaldehyde,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 134 (2015): 81–9.
  • G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Chichester: Wiley, 2004).
  • P. S. Peek and D. P. McDermott, “Vibrational Modes and Frequencies of 2-Pyrrolidinones and Their Deutero-Isotopomers,” Spectrochimica Acta Part A: Molecular Spectroscopy 44, no. 4 (1988): 371–7.
  • A. Kumar, A. K. Srivastava, S. Gangwar, N. Misra, A. Mondal, and G. Brahmachari, “Combined Experimental (FT-IR, UV–Visible Spectra, NMR) and Theoretical Studies on the Molecular Structure, Vibrational Spectra, HOMO, LUMO, MESP Surfaces, Reactivity Descriptor and Molecular Docking of Phomarin,” Journal of Molecular Structure 1096 (2015): 94–101.
  • S. Muthu, J. U. Maheswari, and T. Sundius, “Quantum Mechanical, Spectroscopic Studies (FT-IR, FT-Raman, NMR, UV) and Normal Coordinates Analysis on 3-([2-(Diaminomethyleneamino) Thiazol-4-yl] Methylthio)-N'-Sulfamoylpropanimidamide ,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 108 (2013): 307–18.
  • G. Varsányi, Vibrational Spectra of Benzene Derivatives (New York: Elsevier, 2012).
  • N. Subramanian, N. Sundaraganesan, and J. Jayabharathi, “Molecular Structure, Spectroscopic (FT-IR, FT-Raman, NMR, UV) Studies and First-Order Molecular Hyperpolarizabilities of 1,2-Bis(3-Methoxy-4-Hydroxybenzylidene)Hydrazine by Density Functional Method,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 76, no. 2 (2010): 259–69.
  • Y. Atalay, D. Avci, and A. Başoğlu, “Molecular Structure, Vibrational and Chemical Shift Assignments of 8-Hydroxy-1-Methylquinolinium Iodide Hydrate by Density Functional Theory (DFT) and Ab Initio Hartree-Fock (HF) Calculations,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 71, no. 3 (2008): 760–5.
  • R. Borsdorf, ‘K. Pihlaja, and E. Kleinpeter, “Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis, A.P. Marchand, Ed., 1. Aufl., 379 S., 30 Abb., 95 Tabb., 24 × 16 cm, New York, Weinheim, Cambridge, VCH Weinheim, 1994, Methods in Stereochemical Analysis, Gebunden, 150,00 DM, ISBN 0-89573-332-3,” Journal für Praktische Chemie/Chemiker-Zeitung 338, no. 1 (1996) : 95–6.
  • Ö. Tamer, D. Avcı, and Y. Atalay, “The Effects of Electronegative Substituent Atoms on Structural, Vibrational, Electronic and NLO Properties of Some 4-Nitrostilbene Derivates,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 136 Pt B (2015): 644–50.
  • B. A. Shainyan, N. N. Chipanina, T. N. Aksamentova, L. P. Oznobikhina, G. N. Rosentsveig, and I. B. Rosentsveig, “Intramolecular Hydrogen Bonds in the Sulfonamide Derivatives of Oxamide, Dithiooxamide, and Biuret. FT-IR and DFT Study, AIM and NBO Analysis,” Tetrahedron 66, no. 44 (2010): 8551–6.
  • E. Runge and E. K. U. Gross, “Density-Functional Theory for Time-Dependent Systems,” Physical Review Letters 52, no. 12 (1984): 997–1000.
  • N. K. Hansen and P. Coppens, “Testing Aspherical Atom Refinements on Small-Molecule Data Sets,” Acta Crystallographica Section A 34, no. 6 (1978): 909–921.
  • A. Pakiari and K. Eskandari, “The Chemical Nature of Very Strong Hydrogen Bonds in Some Categories of Compounds,” Journal of Molecular Structure: THEOCHEM 759, no. 1–3 (2006): 51–60.
  • H. Benaissi, M. Drissi, S. Yahiaoui, Y. Megrouss, A. Chouaih, and F. Hamzaoui, “Hirshfeld Surface Analysis, Topological Features and Nonlinear Optical Properties of Phthalonitrile Derivate: Low Temperature Experimental Charge Density and Quantum Chemistry Studies,” Journal of Optoelectronics and Biomedical Materials 10, no. 3 (2018): 73–82.
  • E. Espinosa, M. Souhassou, H. Lachekar, and C. Lecomte, “Topological Analysis of the Electron Density in Hydrogen Bonds,” Acta Crystallographica Section B, Structural Science 55, no. Pt 4 (1999): 563–72.
  • A. H. Pakiari and M. Farrokhnia, “Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-Delocalization,” Iranian Journal of Chemistry and Chemical Engineering 29, no. 4 (2010): 197–210.
  • M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, and B. Revathi, “Topological Analysis (BCP) of Vibrational Spectroscopic Studies, Docking, RDG, DSSC, Fukui Functions and Chemical Reactivity of 2-Methylphenylacetic Acid,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 190 (2018): 47–60.
  • I. Rozas, I. Alkorta, and J. Elguero, “Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors,” Journal of the American Chemical Society 122, no. 45 (2000): 11154–61.
  • E. Espinosa, E. Molins, and C. Lecomte, “Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities,” Chemical Physics Letters 285, no. 3–4 (1998): 170–3.
  • S. J. Grabowski, “Intramolecular Hydrogen Bond Energy and Its Decomposition—O–H···O Interactions,” Crystals 11, no. 1 (2020): 5.
  • S. Emamian, T. Lu, H. Kruse, and H. Emamian, “Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory,” Journal of Computational Chemistry 40, no. 32 (2019): 2868–81.
  • E. Espinosa, I. Alkorta, J. Elguero, and E. Molins, “From Weak to Strong Interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X–H⋯F–Y Systems,” Journal of Chemical Physics 117, no. 12 (2002): 5529–42.
  • R. S. Mulliken, “Electronic Population Analysis on LCAO–MO Molecular Wave Functions,” The Journal of Chemical Physics 23, no. 10 (1955): 1833–40.
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint,” Chemical Reviews 88, no. 6 (1988): 899–926.
  • D. R. Leenaraj and I. H. Joe, “Natural Bond Orbital Analysis and DFT Calculation of Non-Opiod Analgesic Drug Lidocaine,” Materials Today: Proceedings 2, no. 3 (2015): 969–72.
  • M. G. Giuffreda, M. Bruschi, and H. P. Lüthi, “Electron Delocalization in Linearly pi-Conjugated Systems: A Concept for Quantitative Analysis,” Chemistry (Weinheim an Der Bergstrasse, Germany) 10, no. 22 (2004): 5671–80.
  • M. Bruschi, “Electron Delocalization in Linearly k-Conjugated Compounds; a New Approach ofAnalysis” (Diss. ETH no. 16343, Dott. in Chimica Industriale, Università degli Studi di Milano (IT) Born August 17, 1970. Citizen of Italy).
  • V. A. Adole, B. S. Jagdale, T. B. Pawar, and A. B. Sawant, “Experimental and Theoretical Exploration on Single Crystal, Structural, and Quantum Chemical Parameters of (E) ‐7‐(Arylidene)‐1,2,6, 7‐Tetrahydro‐8 H ‐Indeno[5,4‐ b] Furan‐8‐One Derivatives: A Comparative Study,” Journal of the Chinese Chemical Society 67, no. 10 (2020): 1763–77.
  • C.-G. Zhan, J. Nichols, and D. Dixon, “Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies,” The Journal of Physical Chemistry A 107, no. 20 (2003): 4184–95.
  • R. G. Parr, and R. G. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983): 7512–6.
  • W. Yang and W. J. Mortier, “The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines,” Journal of the American Chemical Society 108, no. 19 (1986): 5708–11.
  • H. AlRabiah, S. Muthu, F. Al-Omary, A.-M. Al-Tamimi, M. Raja, R. Raj Muhamed, and A. A.-R. El-Emam, “Molecular Structure, Vibrational Spectra, NBO, Fukui Function, HOMO-LUMO Analysis and Molecular Docking Study of 6-[(2-Methylphenyl)Sulfanyl]-5-Propylpyrimidine-2,4(1H,3H)-Dione,” Macedonian Journal of Chemistry and Chemical Engineering 36, no. 1 (2017): 59–80.
  • J. Padmanabhan, R. Parthasarathi, M. Elango, V. Subramanian, B. S. Krishnamoorthy, S. Gutierrez-Oliva, A. Toro-Labbé, D. R. Roy, and P. K. Chattaraj, “Multiphilic Descriptor for Chemical Reactivity and Selectivity,” The Journal of Physical Chemistry A 111, no. 37 (2007): 9130–8.
  • C. Morell, A. Grand, and A. Toro-Labbé, “New Dual Descriptor for Chemical Reactivity,” The Journal of Physical Chemistry A 109, no. 1 (2005): 205–12.
  • J. Oláh, C. Van Alsenoy, and A. B. Sannigrahi, “Condensed Fukui Functions Derived from Stockholder Charges: Assessment of Their Performance as Local Reactivity Descriptors,” The Journal of Physical Chemistry A 106, no. 15 (2002): 3885–90.
  • S. Liu, C. Rong, and T. Lu, “Information Conservation Principle Determines Electrophilicity, Nucleophilicity, and Regioselectivity,” The Journal of Physical Chemistry. A 118, no. 20 (2014): 3698–704.
  • B. Wang, C. Rong, P. K. Chattaraj, and S. Liu, “A Comparative Study to Predict Regioselectivity, Electrophilicity and Nucleophilicity with Fukui Function and Hirshfeld Charge,” Theoretical Chemistry Accounts. 138, no. 12 (2019): 124.
  • K. B. Wiberg and P. R. Rablen, “Atomic Charges,” The Journal of Organic Chemistry 83, no. 24 (2018): 15463–9.
  • J. Sánchez-Márquez, “Introducing New Reactivity Descriptors: “Bond Reactivity Indices.” Comparison of the New Definitions and Atomic Reactivity indices,” The Journal of Chemical Physics 145, no. 19 (2016): 194105.
  • J. Sánchez-Márquez, “Correlations between Fukui indices and reactivity descriptors based on Sanderson’s principle,” The Journal of Physical Chemistry A 123, no. 40 (2019): 8571–8582 doi:10.1021/acs.jpca.9b05571.
  • P. Sjoberg and P. Politzer, “Use of the Electrostatic Potential at the Molecular Surface to Interpret and Predict Nucleophilic Processes,” The Journal of Physical Chemistry 94, no. 10 (1990): 3959–61.
  • C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, and A. Collet, “Theoretical and Experimental Investigations of the Nonlinear Optical Properties of Vanillin, Polyenovanillin, and Bisvanillin Derivatives,” Journal of the American Chemical Society 116, no. 5 (1994): 2094–102.
  • Y. Sert, M. Gümüş, H. Gökce, İ. Ani, and İ. Koca, “Molecular Docking, Hirshfeld Surface, Structural, Spectroscopic, Electronic, NLO and Thermodynamic Analyses on Novel Hybrid Compounds Containing Pyrazole and Coumarin Cores,” Journal of Molecular Structure. 1171 (2018): 850–66.
  • C. Adant, M. Dupuis, and J. L. Bredas, “Ab Initio Study of the Nonlinear Optical Properties of Urea: Electron Correlation and Dispersion Effects,” International Journal of Quantum Chemistry 56 (1995): 497–507.
  • N. Benhalima, N. Boukabcha, Ö. Tamer, A. Chouaih, D. Avc, Y. Atalay, and F. Hamzaoui, “Solvent Effects on Molecular Structure, Vibrational Frequencies, and NLO Properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene–Sulfonamide: A Density Functional Theory Study,” Brazilian Journal of Physics 46, no. 4 (2016): 371–83.
  • A. Djafri, F. Perveen, N. Benhalima, N. Khelloul, R. Rahmani, A. Djafri, A. Chouaih, M. B. Kanoun, and S. G. Said, “Experimental Spectral Characterization, Hirshfeld Surface Analysis, DFT/TD-DFT Calculations and Docking Studies of (2Z,5Z)-5-(4-Nitrobenzylidene)-3-N(2-Methoxyphenyl)-2-N'(2-Methoxyphenylimino) Thiazolidin-4-one,” Heliyon 6, no. 12 (2020): e05754.
  • A. R. Guerroudj, N. Boukabcha, A. Benmohammed, N. Dege, N. E. H. Belkafouf, N. Khelloul, A. Djafri, and A. Chouaih, “Synthesis, Crystal Structure, Vibrational Spectral Investigation, Intermolecular Interactions, Chemical Reactivity, NLO Properties and Molecular Docking Analysis on (E)-N-(4-Nitrobenzylidene)-3-Chlorobenzenamine: A Combined Experimental and Theoretical Study,” Journal of Molecular Structure 1240 (2021): 130589.
  • A. M. Mohassab, H. A. Hassan, D. Abdelhamid, M. Abdel-Aziz, K. N. Dalby, and T. S. Kaoud, “Novel Quinoline Incorporating 1,2,4-Triazole/Oxime Hybrids: Synthesis, Molecular Docking, Anti-Inflammatory, COX Inhibition, Ulceroginicity and Histopathological Investigations,” Bioorganic Chemistry 75 (2017): 242–59.
  • A. Singh, M. Kalamuddin, A. Mohmmed, P. Malhotra, and N. Hoda, “Quinoline-Triazole Hybrids Inhibit Falcipain-2 and Arrest the Development of Plasmodium falciparum at the Trophozoite Stage,” RSC Advances 9, no. 67 (2019): 39410–21.
  • M. A. Mumit, T. K. Pal, M. A. Alam, M. A-A-A-A. Islam, S. Paul, and M. C. Sheikh, “DFT Studies on Vibrational and Electronic Spectra, HOMO-LUMO, MEP, HOMA, NBO and Molecular Docking Analysis of Benzyl-3-N-(2,4,5-Trimethoxyphenylmethylene)Hydrazinecarbodithioate,” Journal of Molecular Structure 1220 (2020): 128715.
  • H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. "The Protein Data Bank." Nucleic Acids Research, 28, no. 1 (2000): 235–242.
  • T. Damghani, T. Sedghamiz, S. Sharifi, and S. Pirhadi, “Critical c-Met-Inhibitor Interactions Resolved from Molecular Dynamics Simulations of Different c-Met Complexes,” Journal of Molecular Structure 1203 (2020): 127456.
  • P. K. Balasubramanian, A. Balupuri, S. P. Bhujbal, and S. J. Cho, “3D-QSAR-Aided Design of Potent c-Met Inhibitors Using Molecular Dynamics Simulation and Binding Free Energy Calculation,” Journal of Biomolecular Structure & Dynamics 37, no. 8 (2019): 2165–78.
  • Baltschukat, “Capmatinib (INC280) is Active against Models of Non-Small Cell Lung Cancer and Other Cancer Types with Defined Mechanisms of MET Activation,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 25, no. 10 (2019): 3164–75.
  • Y. Sert, S. Lahmidi, M. El. Hafi, H. Gökce, E.-M. Essassi, A. Ejjoumamany, and J. T. Mague, “Spectral, DFT/B3LYP and Molecular Docking Analyses on Ethyl 2-(5-Methyl-1,2,4-Triazolo[1,5-a]Pyrimidin-7-yl)Pent-4-Enoate,” Journal of Molecular Structure 1206 (2020): 127680.
  • Z. Zhan, X. Peng, Q. Liu, F. Chen, Y. Ji, S. Yao, Y. Xi, Y. Lin, T. Chen, Y. Xu, et al, “Discovery of 6-(Difluoro(6-(4-Fluorophenyl)-[1,2,4]Triazolo[4,3-b][1,2,4]Triazin-3-yl)Methyl)Quinoline as a Highly Potent and Selective c-Met Inhibitor,” European Journal of Medicinal Chemistry 116 (2016): 239–51.
  • O. Trott and A. J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient optimization, and multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61.
  • Biovia, Dassault Systèmes. "Discovery studio visualizer" (San Diego, CA, USA 936, 2017).
  • D. Shaji, “Molecular Docking Studies of Human MCT8 Protein with Soy Isoflavones in Allan-Herndon-Dudley Syndrome (AHDS),” Journal of Pharmaceutical Analysis 8, no. 5 (2018): 318–23.
  • J.-L. Stigliani, V. Bernardes-Génisson, J. Bernadou, and G. Pratviel, “Cross-Docking Study on InhA Inhibitors: A Combination of Autodock Vina and PM6-DH2 Simulations to Retrieve Bio-Active Conformations,” Organic & Biomolecular Chemistry 10, no. 31 (2012): 6341–9.
  • A. Mermer, H. Bayrak, S. Alyar, and M. Alagumuthu, “Synthesis, DFT Calculations, Biological Investigation, Molecular Docking Studies of β-Lactam Derivatives,” Journal of Molecular Structure 1208 (2020): 127891.
  • R. Balajee, V. Srinivasadesikan, M. Sakthivadivel, and P. Gunasekaran, “In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors,” Biochemistry Research International 2016 (2016): 7264080.
  • Y. Kaddouri, F. Abrigach, E. B. Yousfi, M. El. Kodadi, and R. Touzani, “New Thiazole, Pyridine and Pyrazole Derivatives as Antioxidant Candidates: Synthesis, DFT Calculations and Molecular Docking study,” Heliyon 6, no. 1 (2020): e03185.
  • D. Anitha, M. Suganthi, G. Shanmugam, and G. Muthusamy, “Identification of Potential Carbonic Anhydrase Inhibitors for Glaucoma Treatment through an in-Silico Approach,” International Journal of Peptide Research and Therapeutics 26, no. 4 (2020): 2147–54.
  • E. Coy-Barrera, “Discrimination of Naturally-Occurring 2-Arylbenzofurans as Cyclooxygenase-2 Inhibitors: Insights into the Binding Mode and Enzymatic Inhibitory Activity,” Biomolecules 10, no. 2 (2020): 176.
  • İ. Çapan, M. Gümüş, H. Gökce, H. Çetin, Y. Sert, and İ. Koca, “Synthesis, Dielectric Properties, Molecular Docking and ADME Studies of Pyrrole-3-Ones,” Journal of Biomolecular Structure and Dynamics. 39, no. 7 (2021): 2376–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.