149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Characterization of TiO2-Based Nanostructure as Efficient Catalyst for the Synthesis of New Heterocycles Benzothiazole-Linked Pyrrolidin-2-One: Catalytic Performances Are Particle’s Size Dependent

, , &
Pages 2404-2417 | Received 31 Dec 2021, Accepted 14 Feb 2022, Published online: 04 Mar 2022

References

  • S. Sun, P. Song, J. Cui, and S. Liang, “Amorphous TiO2 Nanostructures: Synthesis, Fundamental Properties and Photocatalytic Applications,” Catalysis Science & Technology 9, no. 16 (2019): 4198–215.
  • S. Liu, J. Yu, and M. Jaroniec, “Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications,” Chemistry of Materials 23, no. 18 (2011): 4085–93.
  • Y. Ding, I. S. Yang, Z. Li, X. Xia, W. I. Lee, S. Dai, D. W. Bahnemann, and J. H. Pan, “Nanoporous TiO2 Spheres with Tailored Textural Properties: Controllable Synthesis, Formation Mechanism, and Photochemical Applications,” Progress in Materials Science 109 (2020): 100620.
  • J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent Progress in Design, Synthesis, and Applications of One-Dimensional TiO2 Nanostructured Surface Heterostructures: A Review,” Chemical Society Reviews 43, no. 20 (2014): 6920–37.
  • D. Chen and R. A. Caruso, “Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications,” Advanced Functional Materials 23, no. 11 (2013): 1356–74.
  • Z. Fan, F. Meng, M. Zhang, Z. Wu, Z. Sun, and A. Li, “Solvothermal Synthesis of Hierarchical TiO2 Nanostructures with Tunable Morphology and Enhanced Photocatalytic Activity,” Applied Surface Science 360 (2016): 298–305.
  • S. Bagheri, K. Shameli, and S. B. Abd Hamid, “Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method,” Journal of Chemistry 2013 (2013): 1–5.
  • R. Palcheva, L. Dimitrov, G. Tyuliev, A. Spojakina, and K. Jiratova, “TiO2 Nanotubes Supported NiW Hydrodesulphurization Catalysts: Characterization and Activity,” Applied Surface Science 265 (2013): 309–16.
  • G. Liang, L. He, H. Cheng, W. Li, X. Li, C. Zhang, Y. Yu, and F. Zhao, “The Hydrogenation/Dehydrogenation Activity of Supported Ni Catalysts and Their Effect on Hexitols Selectivity in Hydrolytic Hydrogenation of Cellulose,” Journal of Catalysis 309 (2014): 468–76.
  • T. Wang, X.-X. Tian, Y.-W. Li, J. Wang, M. Beller, and H. Jiao, “Coverage-Dependent CO Adsorption and Dissociation Mechanisms on Iron Surfaces from DFT Computations,” ACS Catalysis 4, no. 6 (2014): 1991–2005.
  • H. Kominami, J. Kato, Y. Takada, Y. Doushi, B. Ohtani, S. Nishimoto, M. Inoue, T. Inui, and Y. Kera, “Novel Synthesis of Microcrystalline Titanium (IV) Oxide Having High Thermal Stability and Ultra-High Photocatalytic Activity: Thermal Decomposition of Titanium (IV) Alkoxide in Organic Solvents,” Catalysis Letters 46, no. 3/4 (1997): 235–40.
  • S. Yamazaki, “Selective Synthesis of Sulfoxides and Sulfones by Methyltrioxorhenium-Catalyzed Oxidation of Sulfides with Hydrogen Peroxide,” Bulletin of the Chemical Society of Japan 69, no. 10 (1996): 2955–9.
  • H. J. Reich, F. Chow, and S. L. Peake, “Seleninic Acids as Catalysts for Oxidations of Olefins and Sulfides Using Hydrogen Peroxide,” Chemischer Informationsdienst 9, no. 30 (1978): 105344.
  • M. L. Kantam, S. Laha, J. Yadav, and P. Srinivas, “Synthesis of 2-Indolyl-1-Nitroalkane Derivatives Using Nanocrystalline Titanium (IV) Oxide,” Synthetic Communications 39, no. 22 (2009): 4100–8.
  • M. Tajbakhsh, E. Alaee, H. Alinezhad, M. Khanian, F. Jahani, S. Khaksar, P. Rezaee, and M. Tajbakhsh, “Titanium Dioxide Nanoparticles Catalyzed Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives,” Chinese Journal of Catalysis 33, no. 9-10 (2012): 1517–22.
  • M. Rahimizadeh, Z. Bakhtiarpoor, H. Eshghi, M. Pordel, and G. Rajabzadeh, “TiO2 Nanoparticles: An Efficient Heterogeneous Catalyst for Synthesis of Bis (Indolyl) Methanes under Solvent-Free Conditions,” Monatshefte für Chemie - Chemical Monthly 140, no. 12 (2009): 1465–9.
  • B. B. F. Mirjalili and A. Akbari, “Nano-TiO2: An Eco-Friendly and Re-Usable Catalyst for the One-Pot Synthesis of β-Acetamido Ketones,” Zeitschrift Für Naturforschung B 64, no. 3 (2009): 347–50.
  • B. F. Mirjalili, A. Bamoniri, A. Akbari, and N. Taghavinia, “Nano-TiO2: An Eco-Friendly and Re-Usable Catalyst for the Synthesis of 14-Aryl or Alkyl-14H-Dibenzo [a, j] Xanthenes,” Journal of the Iranian Chemical Society 8, no. S1 (2011): S129–S34.
  • M. L. Kantam, S. Laha, J. Yadav, and B. Sreedhar, “Friedel–Crafts Alkylation of Indoles with Epoxides Catalyzed by Nanocrystalline Titanium (IV) Oxide,” Tetrahedron Letters 47, no. 35 (2006): 6213–6.
  • B. B. F. Mirjalili and A. Akbari, “Nano-TiO2: An Eco-Friendly Alternative for the Synthesis of Quinoxalines,” Chinese Chemical Letters 22, no. 6 (2011): 753–6.
  • A. Khalafi-Nezhad, S. M. Haghighi, A. Purkhosrow, and F. Panahi, “An Efficient One-Pot Access to Quinazolinone Derivatives Using TiO2 Nanoparticles as Catalyst: Synthesis and Vasorelaxant Activity Evaluation,” Synlett 23, no. 06 (2012): 920–4.
  • M. Hosseini-Sarvari, “Nano-Tube TiO2 as a New Catalyst for Eco-Friendly Synthesis of Imines in Sunlight,” Chinese Chemical Letters 22, no. 5 (2011): 547–50.
  • A. Khazaei, A. R. Moosavi-Zare, F. Gholami, and V. Khakyzadeh, “Preparation of 1,2,4,5-Tetrasubstituted Imidazoles over Magnetic Core–Shell Titanium Dioxide Nanoparticles,” Applied Organometallic Chemistry 30, no. 8 (2016): 691–4.
  • A. Khazaei, F. Gholami, V. Khakyzadeh, A. R. Moosavi-Zare, and J. Afsar, “Magnetic Core–Shell Titanium Dioxide Nanoparticles as an Efficient Catalyst for Domino Knoevenagel–Michael-Cyclocondensation Reaction of Malononitrile, Various Aldehydes and Dimedone,” RSC Advances 5, no. 19 (2015): 14305–10.
  • Z. Hosseinzadeh, A. Ramazani, K. Hosseinzadeh, N. Razzaghi-Asl, and F. Gouranlou, “An Overview on Chemistry and Biological Importance of Pyrrolidinone,” Current Organic Synthesis 15, no. 2 (2018): 166–78.
  • V. L. Gein, M. N. Armisheva, N. A. Rassudikhina, M. I. Vakhrin, and E. V. Voronina, “Synthesis and Antimicrobial Activity of 1-(4-Hydroxyphenyl)-4-Acyl-5-Aryl-3-Hydroxy-3-Pyrrolin-2-Ones,” Pharmaceutical Chemistry Journal 45, no. 3 (2011): 162.
  • V. L. Gein, V. A. Mihalev, N. N. Kasimova, E. V. Voronina, M. I. Vakhrin, and E. B. Babushkina, “Synthesis and Antibacterial Activity of 1-Alkoxyalkyl-5-Aryl-4-Acyl-3-Hydroxy-3-Pyrrolin-2-Ones,” Pharmaceutical Chemistry Journal 41, no. 4 (2007): 208–10.
  • V. L. Gein, V. V. Yushkov, N. N. Kasimova, N. S. Shuklina, M. Yu Vasil'eva, and M. V. Gubanova, “Synthesis and Antiinflammatory and Analgesic Activity of 1-(2-Aminoethyl)-5-Aryl-4-Acyl-3-Hydroxy-3-Pyrrolin-2-Ones, Pharmaceutical Chemistry Journal,” Pharmaceutical Chemistry Journal 39, no. 9 (2005): 484–7.
  • K. Okumura, I. Inoue, M. Ikezaki, G. Hayashi, S. Nurimoto, and K. Shintomi, “Synthesis and Antiinflammatory Activity of a Series 1-Aryl-2-Pyrrolidinone Derivatives,” Journal of Medicinal Chemistry 9, no. 3 (1966): 315–9.
  • H. Sasaki, Y. Mori, J. Nakamura, and J. Shibasaki, “Synthesis and Anticonvulsant Activity of 1-Acyl-2-Pyrrolidinone Derivatives,” Journal of Medicinal Chemistry 34, no. 2 (1991): 628–33.
  • S. P. Gordon, E. Tseng, A. Salamov, J. Zhang, X. Meng, Z. Zhao, D. Kang, J. Underwood, I. V. Grigoriev, M. Figueroa, et al, “Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing,” PLoS One 10, no. 7 (2015): e0132628.
  • K. Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, and D. Ye, “Rational Design of 2-Pyrrolinones as Inhibitors of HIV-1 Integrase,” Bioorganic & Medicinal Chemistry Letters 21, no. 22 (2011): 6724–7.
  • M. S. Franco, G. A. Casagrande, C. Raminelli, S. Moura, M. Rossatto, F. H. Quina, C. M. Pereira, A. F. Flores, and L. Pizzuti, “Ultrasound-Promoted Environmentally Friendly Synthesis of 5-(3, 3, 3-Trifluoro-2-Oxopropylidene) Pyrrolidin-2-Ones,” Synthetic Communications 45, no. 6 (2015): 692–701.
  • M. Anada and S. Hashimoto, “Enantioselective Synthesis of 4-Substituted 2-Pyrrolidinones by Site-Selective CH Insertion of α-Methoxycarbonyl-α-Diazoacetanilides Catalyzed by Dirhodium (II) Tetrakis [N-Phthaloyl-(S)-Tert-Leucinate],” Tetrahedron Letters 39, no. 1-2 (1998): 79–82.
  • D.-R. Choi, K.-Y. Lee, Y.-S. Chung, J.-E. Joo, Y.-H. Kim, C.-Y. Oh, Y.-S. Lee, and W.-H. Ham, “Diastereoselective Synthesis of Polysubstituted Pyrrolidinone as a Key Intermediate for the Anticancer Agents by Palladium(II)-Catalyzed Carboxylation,” Archives of Pharmacal Research 28, no. 2 (2005): 151–8.
  • L. E. Burgess and A. I. Meyers, “A Simple Asymmetric Synthesis of 2-Substituted Pyrrolidines and 5-Substituted Pyrrolidinones,” The Journal of Organic Chemistry 57, no. 6 (1992): 1656–62.
  • L. E. Overman and T. P. Remarchuk, “Catalytic Asymmetric Intramolecular Aminopalladation: Enantioselective Synthesis of Vinyl-Substituted 2-Oxazolidinones, 2-Imidazolidinones, and 2-Pyrrolidinones,” Journal of the American Chemical Society 124, no. 1 (2002): 12–3.
  • V. Singh, R. Saxena, and S. Batra, “Simple and Efficient Synthesis of Substituted 2-Pyrrolidinones, 2-Pyrrolones, and Pyrrolidines from Enaminones of Baylis-Hillman Derivatives of 3-Isoxazolecarbaldehydes,” The Journal of Organic Chemistry 70, no. 1 (2005): 353–6.
  • R. Sarkar and C. Mukhopadhyay, “Admicellar Catalysis in Multicomponent Synthesis of Polysubstituted Pyrrolidinones,” Tetrahedron Letters 54, no. 28 (2013): 3706–11.
  • J. Sun, Q. Wu, E.-Y. Xia, and C.-G. Yan, “Molecular Diversity of Three-Component Reactions of Aromatic Aldehydes, Arylamines, and Acetylenedicarboxylates,” European Journal of Organic Chemistry 2011, no. 16 (2011): 2981–6.
  • Q. Zhu, H. Jiang, J. Li, S. Liu, C. Xia, and M. Zhang, “Concise and Versatile Multicomponent Synthesis of Multisubstituted Polyfunctional Dihydropyrroles,” Journal of Combinatorial Chemistry 11, no. 4 (2009): 685–96.
  • C. Shen, P. Zhang, Q. Sun, S. Bai, T. A. Hor, and X. Liu, “Recent Advances in C-S Bond Formation via C-H Bond Functionalization and Decarboxylation,” Chemical Society Reviews 44, no. 1 (2015): 291–314.
  • S. H. L. Kok, R. Gambari, C. H. Chui, M. C. W. Yuen, E. Lin, R. S. M. Wong, F. Y. Lau, G. Y. M. Cheng, W. S. Lam, S. H. Chan, et al., “Synthesis and Anti-Cancer Activity of Benzothiazole Containing Phthalimide on Human Carcinoma Cell Lines,” Bioorganic & Medicinal Chemistry 16, no. 7 (2008): 3626–31.
  • R. J. Alaimo, S. S. Pelosi, and R. Freedman, “Synthesis and Antibacterial Evaluation of 2-(Substituted Phenylureido)-4-Thiocyanatobenzothiazoles,” Journal of Pharmaceutical Sciences 67, no. 2 (1978): 281–2.
  • I. Ćaleta, M. Grdiša, D. Mrvoš-Sermek, M. Cetina, V. Tralić-Kulenović, K. Pavelić, and G. Karminski-Zamola, “Synthesis, Crystal Structure and Antiproliferative Evaluation of Some New Substituted Benzothiazoles and Styrylbenzothiazoles, Il,” Farmaco (Societa Chimica Italiana: 1989) 59, no. 4 (2004): 297–305.
  • P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C. A. Cabras, and P. La. Colla, “Synthesis and Biological Evaluation of Benzo [d] Isothiazole, Benzothiazole and Thiazole Schiff Bases,” Bioorganic & Medicinal Chemistry 11, no. 22 (2003): 4785–9.
  • X. Su, N. Vicker, D. Ganeshapillai, A. Smith, A. Purohit, M. J. Reed, and B. V. Potter, “Benzothiazole Derivatives as Novel Inhibitors of Human 11beta-Hydroxysteroid Dehydrogenase Type 1,” Molecular and Cellular Endocrinology 248, no. 1-2 (2006): 214–7.
  • I. Hutchinson, S. A. Jennings, B. R. Vishnuvajjala, A. D. Westwell, and M. F. Stevens, “Antitumor Benzothiazoles. 16. Synthesis and Pharmaceutical Properties of Antitumor 2-(4-Aminophenyl)Benzothiazole Amino Acid Prodrugs,” Journal of Medicinal Chemistry 45, no. 3 (2002): 744–7.
  • D. S. Dogruer, S. Ünlü, M. F. Şahin, and E. Yqilada, “Anti-Nociceptive and Anti-Inflammatory Activity of Some (2-Benzoxazolone-3-yl and 2-Benzothiazolone-3-yl) Acetic Acid Derivatives,” Il Farmaco 53, no. 1 (1998): 80–4.
  • S. Bondock, W. Fadaly, and M. A. Metwally, “Synthesis and Antimicrobial Activity of Some New Thiazole, Thiophene and Pyrazole Derivatives Containing Benzothiazole Moiety,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 3692–701.
  • R. Danzeisen, B. Schwalenstoecker, F. Gillardon, E. Buerger, V. Krzykalla, K. Klinder, L. Schild, B. Hengerer, A. C. Ludolph, C. Dorner-Ciossek, et al, “Targeted Antioxidative and Neuroprotective Properties of the Dopamine Agonist Pramipexole and Its Nondopaminergic Enantiomer SND919CL2x [(+)2-Amino-4,5,6,7-Tetrahydro-6-Lpropylamino-Benzathiazole Dihydrochloride],” The Journal of Pharmacology and Experimental Therapeutics 316, no. 1 (2006): 189–99.
  • B. L. Mylari, E. R. Larson, T. A. Beyer, W. J. Zembrowski, C. E. Aldinger, M. F. Dee, T. W. Siegel, D. H. Singleton, et al., “Novel, Potent Aldose Reductase Inhibitors: 3,4-Dihydro-4-Oxo-3-[[5-(Trifluoromethyl)-2-Benzothiazolyl] Methyl]-1-Phthalazineacetic Acid (Zopolrestat) and Congeners,” Journal of Medicinal Chemistry 34, no. 1 (1991): 108–22.
  • G. Evindar and R. A. Batey, “Parallel Synthesis of a Library of Benzoxazoles and Benzothiazoles Using Ligand-Accelerated Copper-Catalyzed Cyclizations of ortho-Halobenzanilides,” The Journal of Organic Chemistry 71, no. 5 (2006): 1802–8.
  • V. S. Pavan K. Neti, X. Wu, P. Peng, S. Deng, and L. Echegoyen, “Synthesis of a Benzothiazole Nanoporous Polymer for Selective CO2 Adsorption,” RSC Advances 4 (2014): 9669–72.
  • Y. Riadi, S. Massip, J.-M. Leger, C. Jarry, S. Lazar, and G. Guillaumet, “Convenient Synthesis of 2, 4-Disubstituted Pyrido [2, 3-d] Pyrimidines via Regioselective Palladium-Catalyzed Reactions,” Tetrahedron 68, no. 25 (2012): 5018–24.
  • M. H. Geesi, M. E. Moustapha, M. A. Bakht, and Y. Riadi, “Ultrasound-Accelerated Green Synthesis of New Quinolin-2-Thione Derivatives and Antimicrobial Evaluation against Escherichia coli and Staphylococcus aureus,” Sustainable Chemistry and Pharmacy 15 (2020): 100195.
  • Y. Riadi, “UV Light Mediated Palladium-Catalyzed Synthesis of 2-Substituedpyrido [2,3-d] Pyrimidines,” Polycyclic Aromatic Compounds 41, no. 6 (2021): 1141–6.
  • M. H. Geesi, Y. Riadi, A. Kaiba, E. H. Anouar, O. Ouerghi, E. O. Ibnouf, and P. Guionneau, “Synthesis, Antibacterial Evaluation, Raman, Crystal Structure and Hirshfeld Surface Analysis of a New 3-(4-Fluorophenyl)-6-Methyl-2-(Propylthio) Quinazolin-4 (3H)-One,” Journal of Molecular Structure 1215 (2020): 128265.
  • Y. Riadi, “UV Light-Mediated Regioselective Methylsulfanyl Discrimination via Pd-Catalyzed Cross-Coupling Reactions of 2, 4-Dimethylsulfanylpyrido [2, 3-d] Pyrimidines,” Journal of Sulfur Chemistry 40, no. 4 (2019): 351–60.
  • Y. Riadi, S. Lazar, and G. Guillaumet, “Regioselective Palladium-Catalyzed Suzuki–Miyaura Coupling Reaction of 2, 4, 6-Trihalogenopyrido [2, 3-d] Pyrimidines,” Comptes Rendus Chimie 22, no. 4 (2019): 294–8.
  • Y. Riadi, M. Geesi, O. Dehbi, M. A. Bakht, M. Alshammari, and M.-C. Viaud-Massuarde, “Novel Animal-Bone-Meal-Supported Palladium as a Green and Efficient Catalyst for Suzuki Coupling Reaction in Water, under Sunlight,” Green Chemistry Letters and Reviews 10, no. 2 (2017): 101–6.
  • Y. Riadi and M. Geesi, “Photochemical Route for the Synthesis of Novel 2-Monosubstituted Pyrido [2, 3-d] Pyrimidines by Palladium-Catalyzed Cross-Coupling Reactions,” Chemical Papers 72, no. 3 (2018): 697–701.
  • M. H. Geesi, O. Ouerghi, O. Dehbi, and Y. Riadi, “Metal-Doped TiO2 Nanocatalysts in an MX2/Urea Mixture for the Synthesis of Benzothiazoles Bearing Substituted Pyrrolidin-2-Ones: Enhanced Catalytic Performance and Antibacterial Activity,” Journal of Environmental Chemical Engineering 9, no. 4 (2021): 105344.
  • Z. Liu, Y. G. Andreev, A. R. Armstrong, S. Brutti, Y. Ren, and P. G. Bruce, “Nanostructured TiO2 (B): The Effect of Size and Shape on Anode Properties for Li-Ion Batteries,” Progress in Natural Science: Materials International 23, no. 3 (2013): 235–44.
  • Y.-F. Li and Z.-P. Liu, “Particle Size, Shape and Activity for Photocatalysis on Titania Anatase Nanoparticles in Aqueous Surroundings,” Journal of the American Chemical Society 133, no. 39 (2011): 15743–52.
  • S. L. Isley and R. L. Penn, “Titanium Dioxide Nanoparticles: Effect of Sol − Gel pH on Phase Composition, Particle Size, and Particle Growth Mechanism,” The Journal of Physical Chemistry C 112, no. 12 (2008): 4469–74.
  • D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A Review on Nano-TiO2 Sol–Gel Type Syntheses and Its Applications,” Journal of Materials Science 46, no. 11 (2011): 3669–86.
  • W. Lekphet, T.-C. Ke, C. Su, S. Kathirvel, P. Sireesha, S. B. Akula, and W.-R. Li, “Morphology Control Studies of TiO2 Microstructures via Surfactant-Assisted Hydrothermal Process for Dye-Sensitized Solar Cell Applications,” Applied Surface Science 382 (2016): 15–26.
  • Y. Zhou, Y. Huang, D. Li, and W. He, “Three-Dimensional Sea-Urchin-Like Hierarchical TiO2 Microspheres Synthesized by a One-Pot Hydrothermal Method and Their Enhanced Photocatalytic Activity,” Materials Research Bulletin 48, no. 7 (2013): 2420–5.
  • A. Kaiba, O. Ouerghi, M. H. Geesi, A. Elsanousi, A. Belkacem, O. Dehbi, A. I. Alharthi, M. A. Alotaibi, and Y. Riadi, “Characterization and Catalytic Performance of Ni-Doped TiO2 as a Potential Heterogeneous Nanocatalyst for the Preparation of Substituted Pyridopyrimidines,” Journal of Molecular Structure 1203 (2020): 127376.
  • U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” Journal of Solid State Chemistry 42, no. 3 (1982): 276–82.
  • B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation,” Langmuir 17, no. 9 (2001): 2664–9.
  • E. McCafferty and J. P. Wightman, “Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method,” Surface and Interface Analysis 26, no. 8 (1998): 549–64.
  • H. Peng, X. Yang, P. Zhang, Y. Zhang, C. Liu, D. Liu, and J. Gui, “Diethylenetriamine-Assisted in Situ Synthesis of TiO2 Nanoparticles on Carbon Nanotubes with Well-Defined Structure and Enhanced Photocatalytic Performance,” RSC Advances 7, no. 79 (2017): 50216–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.