118
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Silica Bonded Bis(Hydrogensulphato)Benzene as a New, Sustainable Catalytic Material for an Efficient and Aqueous Based Synthesis of 5-Oxo-4H-Pyrano[3,2-c]Quinolone Scaffolds

ORCID Icon, , , , ORCID Icon &
Pages 2524-2539 | Received 03 Jan 2022, Accepted 19 Feb 2022, Published online: 24 Mar 2022

References

  • Fujian Liu, Kuan Huang, Anmin Zheng, Feng-Shou Xiao, and Sheng Dai, “Hydrophobic Solid Acids and Their Catalytic Applications in Green and Sustainable Chemistry,” ACS Catalysis 8, no. 1 (2018): 372–91. doi:10.1021/acscatal.7b03369.
  • Fang Su and Yihang Guo, “Advancements in Solid Acid Catalysts for Biodiesel Production,” Green Chemistry 16, no. 6 (2014): 2934–57. doi:10.1039/C3GC42333F.
  • Mohammed O. Faruque, Shaikh A. Razzak, and Mohammad M. Hossain, “Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review,” Catalysts 10, no. 9 (2020): 1025. doi:10.3390/catal10091025.
  • Palraj Kasinathan, Charlotte Lang, Sambhu Radhakrishnan, Josefine Schnee, Cécile D'Haese, Eric Breynaert, Johan A. Martens, Eric M. Gaigneaux, Alain M. Jonas, and Antony E. Fernandes, “‘Click’ Silica-Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity,” Chemistry 25, no. 27 (2019): 6753–62. doi:10.1002/chem.201806186.
  • F. Liu, C. Liu, W. Kong, C. Qi, A. Zheng, and S. Dai, “Design and Synthesis of Micro–Meso–Macroporous Polymers with Versatile Active Sites and Excellent Activities in the Production of Biofuels and Fine Chemicals,” Green Chemistry 18, no. 24 (2016): 6536–44. doi:10.1039/C6GC02237E.
  • G. Busca and A. Gervasini, “Solid Acids, Surface Acidity and Heterogeneous Acid Catalysis,” Advances in Catalysis 67 (2020): 1–90. doi:10.1016/bs.acat.2020.09.003.
  • K. Wilson and J. H. Clark, “Solid Acids and Their Use as Environmentally Friendly Catalysts in Organic Synthesis,” Pure and Applied Chemistry 72, no. 7 (2000): 1313–19. doi:10.1351/pac200072071313.
  • F. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng, and F. S. Xiao, “Transesterification Catalyzed by Ionic Liquids on Superhydrophobic Mesoporous Polymers: Heterogeneous Catalysts That Are Faster than Homogeneous Catalysts,” Journal of the American Chemical Society 134, no. 41 (2012): 16948–50. doi:10.1021/ja307455w.
  • P. Gupta and S. Paul, “Solid Acids: Green Alternatives for Acid Catalysis,” Catalysis Today 236 (2014): 153–70. doi:10.1016/j.cattod.2014.04.010.
  • Hossein Eshghi and Asadollah Hassankhani, “Phosphorus Pentoxide Supported on Silica Gel and Alumina (P2O5/SiO2, P2O5/Al2O3) as Useful Catalysts in Organic Synthesis,” Journal of the Iranian Chemical Society 9, no. 4 (2012): 467–82. DOI doi:10.1007/s13738-011-0057-0.
  • D. W. Lee, M. H. Jin, J. H. Park, Y. J. Lee, Y. C. Choi, J. Chan Park, and D. H. Chun, “Alcohol and Water Free Synthesis of Mesoporous Silica Using Deep Eutectic Solvent as a Template and Solvent and Its Application as a Catalyst Support for Formic Acid Dehydrogenation,” ACS Sustainable Chemistry & Engineering 6, no. 9 (2018): 12241–50. doi:10.1021/acssuschemeng.8b02606.
  • Manoj B. Gawande, Reza Hosseinpour, and Rafael Luque, “Silica Sulfuric Acid and Related Solid-Supported Catalysts as Versatile Materials for Greener Organic Synthesis,” Current Organic Synthesis 11, no. 4 (2014): 526–44. doi:10.2174/15701794113106660080.
  • M. A. Abedin, S. Kanitkar, N. Kumar, Z. Wang, K. Ding, G. Hutchings, and J. J. Spivey, “Probing the Surface Acidity of Supported Aluminum Bromide Catalysts,” Catalysts 10, no. 8 (2020): 869. doi:10.3390/catal10080869.
  • K. A. Utting and D. J. Macquarrie, “Silica-Supported Imines as Mild, Efficient Base Catalysts,” New Journal of Chemistry 24, no. 8 (2000): 591–95. doi:10.1039/b002424o.
  • S. R. Docherty, N. Phongprueksathat, E. Lam, G. Noh, O. V. Safonova, A. Urakawa, and C. Copéret, “Silica-Supported PdGa Nanoparticles: Metal Synergy for Highly Active and Selective CO2-to-CH3OH Hydrogenation,” JACS Au 1, no. 4 (2021): 450–58. doi:10.1021/jacsau.1c00021.
  • Y. Jiang, K. Chai, Y. Wang, H. Zhang, W. Xu, W. Li, and Y. Shi, “Mesoporous Silica-Supported CuCo2O4 Mixed-Metal Oxides for the Aerobic Oxidation of Alcohols,” ACS Applied Nano Materials 2, no. 7 (2019): 4435–42. doi:10.1021/acsanm.9b00828.
  • G. Kour, M. Gupta, S. Paul, and Gupta V. K. Rajnikant, “SiO2–CuCl2: An Efficient and Recyclable Heterogeneous Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Journal of Molecular Catalysis A: Chemical 392 (2014): 260–69. doi:10.1016/j.molcata.2014.05.022.
  • Amir Khojastehnezhad, Farid Moeinpour, and Ali Javid, “NiFe2O4@SiO2–PPA Nanoparticle: A Green Nanocatalyst for the Synthesis of β-Acetamido Ketones,” Polycyclic Aromatic Compounds 39, no. 5 (2019): 404–12. doi:10.1080/10406638.2017.1335218.
  • J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 20, no. 5 (2003): 476–93. doi:10.1039/b208140g.
  • J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 21, no. 5 (2004): 650–68. doi:10.1039/b310691h.
  • M. Ramadan, Y. A. M. M. Elshaier, A. A. Aly, M. Abdel-Aziz, H. M. Fathy, A. B. Brown, J. R. Pridgen, K. N. Dalby, and T. S. Kaoud, “Development of 2′-Aminospiro [Pyrano[3,2-c]Quinoline]-3′-Carbonitrile Derivatives as Non-ATP Competitive Src Kinase Inhibitors That Suppress Breast Cancer Cell Migration and Proliferation,” Bioorganic Chemistry 116 (2021): 105344. doi:10.1016/J.BIOORG.2021.105344.
  • M. Rbaa, A. Hichar, O. Bazdi, Y. Lakhrissi, K. Ounine, and B. Lakhrissi, “Synthesis, Characterization, and In Vitro Antimicrobial Investigation of Novel Pyran Derivatives Based on 8-Hydroxyquinoline,” Beni-Suef University Journal of Basic and Applied Sciences 8, no. 1 (2019): 1-7. doi:10.1186/s43088-019-0009-9.
  • M. G. Liberto, A. J. Caldo, A. D. Quiroga, M. J. Riveira, and M. G. Derita, “Zanthosimuline and Related Pyranoquinolines as Antifungal Agents for Postharvest Fruit Disease Control,” ACS Omega 5, no. 13 (2020): 7481–87. doi:10.1021/acsomega.0c00225.
  • J. J. Chen, P. H. Chen, C. H. Liao, S. Y. Huang, and I. S. Chen, “New Phenylpropenoids, Bis(1-Phenylethyl)Phenols, Bisquinolinone Alkaloid, and anti-Inflammatory Constituents from Zanthoxylum integrifoliolum,” Journal of Natural Products 70, no. 9 (2007): 1444–48. doi:10.1021/np070186g.
  • K. D. Upadhyay, N. M. Dodia, R. C. Khunt, R. S. Chaniara, and A. K. Shah, “Synthesis and Biological Screening of Pyrano[3,2-c]Quinoline Analogues as Anti-Inflammatory and Anticancer Agents,” ACS Medicinal Chemistry Letters 9, no. 3 (2018): 283–88. doi:10.1021/acsmedchemlett.7b0054.
  • B. S. Matada, R. Pattanashettar, and N. G. Yernale, “A Comprehensive Review on the Biological Interest of Quinoline and Its Derivatives,” Bioorganic & Medicinal Chemistry 32 (2021): 115973. doi:10.1016/j.bmc.2020.115973.
  • D. A. Dias, S. Urban, and U. Roessner, “A Historical Overview of Natural Products in Drug discovery,” Metabolites 2, no. 2 (2012): 303–36. doi:10.3390/metabo2020303.
  • Ih-Sheng Chen, Inn-Wha Tsai, Che-Ming Teng, Jih-Jung Chen, Ya-Ling Chang, Feng-Nien Ko, Matthias C. Lu, and John M. Pezzuto, “Pyranoquinoline Alkaloids from Zanthoxylum simulans,” Phytochemistry 46, no. 3 (1997): 525–29. doi:10.1016/S0031-9422(97)00280-X.
  • Fumito Koizumi, Naomi Fukumitsu, Jinrong Zhao, Ruthada Chanklan, Tokichi Miyakawa, Shoko Kawahara, Shin Iwamoto, Makoto Suzuki, Shingo Kakita, Endang S. Rahayu, et al., “YCM1008A, a Novel Ca2+-Signaling Inhibitor, Produced by Fusarium sp. YCM1008,” The Journal of Antibiotics 60, no. 7 (2007): 455–58. doi:10.1038/ja.2007.58.
  • Chihiro Ito, Masataka Itoigawa, Akiko Furukawa, Takashi Hirano, Tomiyasu Murata, Norio Kaneda, Youichi Hisada, Kazuyo Okuda, and Hiroshi Furukawa, “Quinolone Alkaloids with Nitric Oxide Production Inhibitory Activity from Orixa japonica,” Journal of Natural Products 67, no. 11 (2004): 1800–03. doi:10.1021/np0401462.
  • Kuldip D. Upadhyay and Anamik K. Shah, “Evaluation of Pyrano[3,2 c] Quinoline Analogues as Anticancer Agents,” Anti-Cancer Agents in Medicinal Chemistry 19, no. 10 (2019): 1285–92. doi:10.2174/1871520619666190308122734.
  • I. S. Chen, S. J. Wu, I. L. Tsai, T. S. Wu, J. M. Pezzuto, M. C. Lu, and C. M. Teng, “Chemical and Bioactive Constituents from Zanthoxylum simulans,” Journal of Natural Products 57, no. 9 (1994): 1206–11. doi:10.1021/np50111a003.
  • Abdeltawab M. Saeed, Ibrahim M. Abdou, Alaa A. Salem, Mohammad A. Ghattas, Noor Atatreh, and Shaikha S. Al Neyadi, “Anti-Cancer Activity and Molecular Docking of Some Pyrano[3,2-c]Quinoline Analogues,” Open Journal of Medicinal Chemistry 10, no. 1 (2020): 1–14. doi:10.4236/ojmc.2020.101001.
  • Igor V. Magedov, Madhuri Manpadi, Marcia A. Ogasawara, Adriana S. Dhawan, Snezna Rogelj, Severine Van Slambrouck, Wim F. A. Steelant, Nikolai M. Evdokimov, Pavel Y. Uglinskii, Eerik M. Elias, et al., “Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 2. Antiproliferative and Antitubulin Activities of Pyrano[3,2-c]Pyridones and Pyrano[3,2-c]Quinolones,” Journal of Medicinal Chemistry 51, no. 8 (2008): 2561–70. doi:10.1021/jm701499n.
  • K. D. McBrien, Q. Gao, S. Huang, S. E. Klohr, R. R. Wang, D. M. Pirnik, K. M. Neddermann, I. Bursuker, K. F. Kadow, and J. E. Leet, “Fusaricide, a New Cytotoxic N-hydroxypyridone from Fusarium sp.,” Journal of Natural Products 59, no. 12 (1996): 1151–53. doi:10.1021/np960521t.
  • A. Alizadeh and A. Rostampoor, “An Efficient Synthesis of Novel Functionalized Benzo[h]Pyrano[2,3-b]Quinolines and Pyrano[2,3-b]Quinoline Derivatives via One-Pot Multicomponent Reactions,” Journal of the Iranian Chemical Society (2021). doi:10.1007/s13738-021-02376-9.
  • N. S. Kaminwar, S. U. Tekale, R. U. Pokalwar, L. Kótai, and R. P. Pawar, “An Efficient and Rapid Synthesis of 1,4-Dihydropyrano[2,3-c]Pyran and 1,4-Dihydropyrano[2,3-c]Quinoline Derivatives Using Copper Nanoparticles Grafted on Carbon Microspheres,” Polycyclic Aromatic Compounds (2021): 1–9. doi:10.1080/10406638.2021.1950194.
  • P. Gunasekaran, P. Prasanna, S. Perumal, and A. I. Almansour, “ZnCl2-Catalyzed Three-Component Domino Reactions for the Synthesis of Pyrano[3,2-c]Quinolin-5(6H)-Ones,” Tetrahedron Letters 54, no. 25 (2013): 3248–52. doi:10.1016/j.tetlet.2013.04.022.
  • S. J. Jadhav, R. B. Patil, D. R. Kumbhar, A. A. Patravale, D. R. Chandam, and M. B. Deshmukh, “Sulfamic Acid Catalyzed Atom Economic, Eco-Friendly Synthesis of Novel 7-(Aryl)-10-Thioxo-7,9,10,11-Tetrahedro-6H-Pyrimido-[5′4′:5,6]Pyrano[3,2-c]Quinoline-6,8(5H)-Dione and Its Derivatives,” Journal of Heterocyclic Chemistry 54, no. 4 (2017): 2206–15. doi:10.1002/jhet.2807.
  • X. Wang, Z. Zeng, D. Shi, X. Wei, and Z. Zong, “One‐Step Synthesis of 2‐Amino‐3‐Cyano‐4‐ Aryl‐1,4,5,6‐Tetrahydropyrano[3,2‐c]Quinolin‐5‐One Derivatives Using KF–Al2O3 as Catalyst,” Synthetic Communications 34, no. 16 (2004): 3021–27. doi:10.1081/SCC-200026662.
  • M. Lei, L. Ma, and L. Hu, “A Green, Efficient, and Rapid Procedure for the Synthesis of 2-Amino-3-Cyano-1,4,5,6-Tetrahydropyrano[3,2-c]Quinolin-5-One Derivatives Catalyzed by Ammonium Acetate,” Tetrahedron Letters 52, no. 20 (2011): 2597–600. doi:10.1016/j.tetlet.2011.03.061.
  • Ravi Chaniyara, Shailesh Thakrar, Rajesh Kakadiya, Bhavin Marvania, Dilip Detroja, Nikhil Vekariya, Kuldip Upadhyay, Atul Manvar, and Anamik Shah, “DBU-Catalyzed Multicomponent Synthesis: Facile Access of 4,5,6,9-Tetrahydro-Pyrido[3,2-c]Quinolones,” Journal of Heterocyclic Chemistry 51, no. 2 (2014): 466–74. doi:10.1002/jhet.1662.
  • S. Zhu, J. Wang, Z. Xu, and J. Li, “An Efficient One-Pot Synthesis of Pyrano[3,2-c]Quinolin-2,5-Dione Derivatives Catalyzed by L-Proline,” Molecules 17, no. 12 (2012): 13856–63. doi:10.3390/molecules171213856.
  • Vetrivel Nadaraj, Senniappan Thamarai Selvi, Helen Pricilla Bai, Sellappan Mohan, and Thangaian Daniel Thangadurai, “Microwave Solvent-Free Condition Synthesis and Pharmacological Evaluation of Pyrano[3,2-c]Quinolones,” Medicinal Chemistry Research 21, no. 10 (2012): 2902–10. doi:10.1007/s00044-011-9810-2.
  • L. Han, X. Hu, and Z. Zhou, “Diammonium Hydrogen Phosphate as a Recyclable Catalyst for the Rapid and Green Synthesis of 2-Amino-1,4,5,6-Tetrahydropyrano[3,2-c]-Quinolin-5-One Derivatives,” Polycyclic Aromatic Compounds 37, no. 1 (2017): 73–80. doi:10.1080/10406638.2015.1099551.
  • K. S. Pandit, P. V. Chavan, U. V. Desai, M. A. Kulkarni, and P. P. Wadgaonkar, “Tris-Hydroxymethylaminomethane (THAM): A Novel Organocatalyst for a Environmentally Benign Synthesis of Medicinally Important Tetrahydrobenzo[b]Pyrans and Pyran-Annulated Heterocycles,” New Journal of Chemistry 39, no. 6 (2015): 4452–63. doi:10.1039/C4NJ02346C.
  • P. Prasad, P. G. Shobhashana, and M. P. Patel, “An Efficient Synthesis of 4H-Pyrano Quinolinone Derivatives Catalysed by a Versatile Organocatalyst Tetra-n-Butylammonium Fluoride and Their Pharmacological Screening,” Royal Society Open Science 4, no. 11 (2017): 170764. doi:10.1098/rsos.170764.
  • A. Poursattar Marjani, J. Khalafy, and A. Farajollahi, “Synthesis of Ethyl 2-Amino-4-Benzoyl-5-Oxo-5,6-Dihydro-4h-Pyrano[3,2-c]Quinoline-3-Carboxylates by a One-Pot, Three-Component Reaction in the Presence of TPAB,” Journal of Heterocyclic Chemistry 56, no. 1 (2019): 268–74. doi:10.1002/jhet.3404.
  • A. Akbari and Z. Azami-Sardooei, “Simple Method for the Synthesis and Antibacterial Activity of 2-Amino-3-cyano1,4,5,6-Tetrahydropyrano[3,2-c] Quinolin-5-One Derivatives,” Bulgarian Chemical Communications 46 (2014): 757–63.
  • M. Khaleghi-Abbasabadi and D. Azarifar, “Magnetic Fe3O4-Supported Sulfonic Acid-Functionalized Graphene Oxide (Fe3O4@GO-naphthalene-SO3H): A Novel and Recyclable Nanocatalyst for Green One-Pot Synthesis of 5-Oxo-Dihydropyrano[3,2-c]Chromenes and 2-Amino-3-Cyano-1,4,5,6-Tetrahydropyrano[3,2-c]Quinolin-5-Ones,” Research on Chemical Intermediates 45 (2019): 2095–118. doi:10.1007/s11164-018-03722-y.
  • F. Asghari-Haji, K. Rad-Moghadam, N. O. Mahmoodi, T. Tonekaboni, and N. Rahimi, “Cobalt Ferrite Encapsulated in a Zwitterionic Chitosan Derived Shell: An Efficient Nano-Magnetic Catalyst for Three-Component Syntheses of Pyrano[3,2-c] Quinolines and Spiro-Oxindoles,” Applied Organometallic Chemistry 31, no. 12 (2017): e3891. doi:10.1002/aoc.3891.
  • Z. Tashrifi, K. Rad Moghadam, and M. Mehrdad, “Catalytic Performance of a New Brønsted Acidic Oligo(Ionic Liquid) in Efficient Synthesis of Pyrano[3,2-c]Quinolines and Pyrano[2,3-d]Pyrimidines,” Journal of Molecular Liquids 248 (2017): 278–85. doi:10.1016/j.molliq.2017.10.065.
  • K. Rad Moghadam, S. C. Azimi, and E. Abbaspour-Gilandeh, “Synthesis of Novel Pyrano[3,2-c]Quinoline-2,5-Diones Using an Acidic Ionic Liquid Catalyst,” Tetrahedron Letters 54, no. 35 (2013): 4633–36. doi:10.1016/j.tetlet.2013.06.050.
  • E. Abbaspour-Gilandeh and S. Azimi, “The Green Synthesis of Pyrano[3,2-c]Quinoline-2,5-Dione Derivatives Catalyzed by Acidic Ionic Liquid under Ultrasound Irradiation,” Quarterly Journal of Iranian Chemical Communication 3, no. 3 (2015): 180–282.
  • V. T. Kamble, K. R. Kadam, A. S. Waghmare, and V. D. Murade, “Synthesis of Silica Chemisorbed Bis(Hydrogensulphato)Benzene (SiO2–BHSB) as a New Hybrid Material and It’s Utility as an Efficient, Recyclable Catalyst for the Green Synthesis of Bis(Indolyl)Methanes,” Sustainable Chemistry and Pharmacy 18 (2020): 100314. doi:10.1016/j.scp.2020.100314.
  • Vinod T. Kamble, Amit S. Waghmare, Vaishali D. Murade, and Kailas R. Kadam, “Silica Chemisorbed Bis(Hydrogensulphato)Benzene (SiO2-BHSB) as a New, Efficient, and Recyclable Catalyst for the Synthesis of 5-Oxopyrono[3,2-c]Chromene Scaffolds in Water-Based Solvent,” Phosphorus, Sulfur, and Silicon and the Related Elements 196, no. 12 (2021): 1038–48. doi:10.1080/10426507.2021.1986503.
  • K. R. Kadam, “An Expedient Carbon–Sulfur Bond Formation Explored through the Cellulose Sulfonic Acid (CSA) Catalyzed Dithioacetal Protection of Carbonyl Compounds,” Journal of Sulfur Chemistry 41, no. 5 (2020): 530–41. doi:10.1080/17415993.2020.1775835.
  • Kadam Kailas, R. Narendra, R. Kamble, and Vinod T. Kamble, “NbCl5-AgClO4 as an Effective, Synergetic Catalytic System for the Synthesis of Fully Substituted Pyrazoles,” Rasayan Journal of Chemistry 13 (2020): 854–49. doi:10.31788/RJC.2020.1325728.
  • M. A. Zolfigol, T. Madrakian, E. Ghaemi, A. Afkhami, S. Azizian, and S. Afshar, “Synthesis of Morpholinated and 8-Hydroxyquinolinated Silica Gel and Their Application to Water Softening,” Green Chemistry 4, no. 6 (2002): 611–14. doi:10.1039/b208526g.
  • E. De Oliveira, J. D. Torres, C. C. Silva, A. A. M. Luz, P. Bakuzis, and A. G. S. Prado, “Tetramethylguanidine Covalently Bonded onto Silica Gel as Catalyst for the Addition of Nitromethane to Cyclopentenone,” Journal of the Brazilian Chemical Society 17, no. 5 (2006): 994–99. doi:10.1590/S0103-50532006000500026.
  • B. Lebeau, C. E. Fowler, S. R. Hall, and S. Mann, “Transparent Thin Films and Monoliths Prepared from Dye‐Functionalized Ordered Silica Mesostructures,” Journal of Materials Chemistry 9, no. 10 (1999): 2279–81. doi:10.1039/a905155d.
  • Y. I. Gorlov, A. M. Nesterenko, and A. A. Chuiko, “The Chemisorption of Acid Chlorides on the Silica Surface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 106, no. 2–3 (1996): 83–88. doi:10.1016/0927-7757(95)03283-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.