194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation Immobilized Cu Nanoparticles on Modified Metal-Organic Framework via Linker Design as an Effective and Highly Efficient Nanocatalyst for the Synthesis of Propargyl Amines Derivatives

, &
Pages 2920-2937 | Received 22 Dec 2021, Accepted 17 Mar 2022, Published online: 08 May 2022

References

  • L. Liu, X. Tai, and X. Zhou, “Au3+/Au0 Supported on Chromium (III) Terephthalate Metal Organic Framework (MIL-101) as an Efficient Heterogeneous Catalystfor Three-Component Coupling Synthesis of Propargylamines,” Materials (Basel) 10, no. 2 (2017): 99. doi:10.3390/ma10020099.
  • M. Milen, G. Györke, A. Dancsó, and B. Volk, “Study on the A3-Coupling Reaction Catalyzed by Readily Available Copper-Containing Minerals. Synthesis of Propargylamines,” Tetrahedron Letters 61, no. 10 (2020): 151544. doi:10.1016/j.tetlet.2019.151544.
  • J. Ren, N. M. Musyoka, H. W. Langmi, A. Swartbooi, B. C. North, and M. Mathe, “A More Efficient Way to Shape Metal-Organic Framework (MOF) Powder Materials for Hydrogen Storage Applications,” International Journal of Hydrogen Energy 40, no. 13 (2015): 4617–22. doi:10.1016/j.ijhydene.2015.02.011.
  • N. Salam, S. K. Kundu, A. S. Roy, P. Mondal, S. Roy, A. Bhaumik, and S. M. Islam, “Cu-Grafted Mesoporous Organic Polymer: A New Recyclable Nanocatalyst for Multi-Component, N-Arylation and S-Arylation Reactions,” Catalysis Science & Technology 3, no. 12 (2013): 3303–16. doi:10.1039/c3cy00600j.
  • E. Loukopoulos, M. Kallitsakis, N. Tsoureas, A. Abdul-Sada, N. F. Chilton, I. N. Lykakis, and G. E. Kostakis, “Cu(II) Coordination Polymers as Vehicles in the A3 Coupling,” Inorganic Chemistry 56, no. 9 (2017): 4898–910. doi:10.1021/acs.inorgchem.6b03084.
  • P. Li, S. Regati, H.-C. Huang, H. D. Arman, B.-L. Chen, and J. C.-G. Zhao, “A Sulfonate-Based Cu (I) metal-Organic Framework as a Highly Efficient and Reusable Catalyst for the Synthesis of Propargylamines under Solvent-Free Conditions,” Chinese Chemical Letters 26, no. 1 (2015): 6–10. doi:10.1016/j.cclet.2014.10.022.
  • N. Salam, S. K. Kundu, R. A. Molla, P. Mondal, A. Bhaumik, and S. M. Islam, “Ag-Grafted Covalent Imine Network Material for One-Pot Three-Component Coupling and Hydration of Nitriles to Amides in Aqueous Medium,” RSC Advances 4, no. 88 (2014): 47593–604. doi:10.1039/C4RA07622B.
  • Y. He, M. Lv, and C. Cai, “A Simple Procedure for Polymer-Supported N-Heterocyclic Carbene Silver Complex via Click Chemistry: An Efficient and Recyclable Catalyst for the One-Pot Synthesis of Propargylamines,” Dalton Transactions (Cambridge, England: 2003) 41, no. 40 (2012): 12428–33. doi:10.1039/c2dt31609a.
  • W. Fan, X. Wang, B. Xu, Y. Wang, D. Liu, M. Zhang, Y. Shang, F. Dai, L. Zhang, and D. Sun, “Amino-Functionalized MOFs with High Physicochemical Stability for Efficient Gas Storage/Separation, Dye Adsorption and Catalytic Performance,” Journal of Materials Chemistry A 6, no. 47 (2018): 24486–95. doi:10.1039/C8TA07839D.
  • C. Xu, R. Fang, R. Luque, L. Chen, and Y. Li, “Functional Metal–Organic Frameworks for Catalytic Applications,” Coordination Chemistry Reviews 388 (2019): 268–92. doi:10.1016/j.ccr.2019.03.005.
  • B. Illes, P. Hirschle, S. Barnert, V. Cauda, S. Wuttke, and H. Engelke, “Exosome-Coated Metal–Organic Framework Nanoparticles: An Efficient Drug Delivery Platform,” Chemistry of Materials 29, no. 19 (2017): 8042–6. doi:10.1021/acs.chemmater.7b02358.
  • J. Wang, M. Jiang, L. Yan, R. Peng, M. Huangfu, X. Guo, Y. Li, and P. Wu, “Multifunctional Luminescent Eu(III)-Based Metal-Organic Framework for Sensing Methanol and Detection and Adsorption of Fe(III) Ions in Aqueous Solution,” Inorganic Chemistry 55, no. 24 (2016): 12660–8. doi:10.1021/acs.inorgchem.6b01815.
  • K. Deng, Z. Hou, X. Li, C. Li, Y. Zhang, X. Deng, Z. Cheng, and J. Lin, “Aptamer-Mediated up-Conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging,” Scientific Reports 5 (2015): 1–7.
  • M. Bagheri, M. Y. Masoomi, A. Morsali, and A. Schoedel, “Two Dimensional Host-Guest Metal-Organic Framework Sensor with High Selectivity and Sensitivity to Picric Acid,” ACS Applied Materials & Interfaces 8, no. 33 (2016): 21472–9. doi:10.1021/acsami.6b06955.
  • H. Alinezhad, M. Cheraghian, and S. Ghasemi, “Preparation Anchored Pd Nanoparticles on Glyoxal Modified Metal-Organic Framework for Sonogashira Coupling Reactions,” Journal of Organometallic Chemistry 907 (2020): 121069. doi:10.1016/j.jorganchem.2019.121069.
  • A. Chołuj, N. I. Nikishkin, and M. Chmielewski, “Facile Post-Synthetic Deamination of MOFs and the Synthesis of the Missing Parent Compound of the MIL-101 Family,” Chemical Communications (Cambridge, England) 53, no. 73 (2017): 10196–9. doi:10.1039/c7cc06054h.
  • J. Li, Y. Fan, Y. Ren, J. Liao, C. Qi, and H. Jiang, “Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation,” Inorganic Chemistry 57, no. 3 (2018): 1203–12. doi:10.1021/acs.inorgchem.7b02631.
  • A. Bavykina, N. Kolobov, I. S. Khan, J. A. Bau, A. Ramirez, and J. Gascon, “Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives,” Chemical Reviews 120, no. 16 (2020): 8468–535. doi:10.1021/acs.chemrev.9b00685.
  • K. H. Lee, S.-W. Han, K.-Y. Kwon, and J. B. Park, “Systematic Analysis of Palladium-Graphene Nanocomposites and Their Catalytic Applications in Sonogashira Reaction,” Journal of Colloid and Interface Science 403 (2013): 127–33. doi:10.1016/j.jcis.2013.04.006.
  • M. Kassymova, A. De Mahieu, S. Chaemchuen, P. Demeyere, B. Mousavi, S. Zhuiykov, M. S. Yusubov, and F. Verpoort, “Post-Synthetically Modified MOF for the a 3-Coupling Reaction of Aldehyde, Amine, and Alkyne,” Catalysis Science & Technology 8, no. 16 (2018): 4129–40. doi:10.1039/C8CY00662H.
  • M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park, and M. J. Rosseinsky, “Generation of a Solid Brønsted Acid Site in a Chiral Framework,” Chemical Communications, no. 11 (2008): 1287–9. doi:10.1039/b718443c.
  • A. Kiani, H. Alinezhad, and S. Ghasemi, “Versatile and an Efficient Sonogashira Coupling Reaction Catalyzed with Modified Pd-Functionalized TMU-16 as a Novel and Reusable Nanocatalyst,” Journal of Organometallic Chemistry 950 (2021): 121975. doi:10.1016/j.jorganchem.2021.121975.
  • G. Xiong, X.-L. Chen, L.-X. You, B.-Y. Ren, F. Ding, I. Dragutan, V. Dragutan, and Y.-G. Sun, “La-Metal-Organic Framework Incorporating Fe3O4 Nanoparticles, Post-Synthetically Modified with Schiff Base and Pd. A Highly Active, Magnetically Recoverable, Recyclable Catalyst for CC Cross-Couplings at Low Pd Loadings,” Journal of Catalysis 361 (2018): 116–25. doi:10.1016/j.jcat.2018.02.026.
  • M. Zhong, S. Zhang, A. Dong, Z. Sui, L. Feng, and Q. Chen, “Cu-MOF/Au–Pd Composite Catalyst: preparation and Catalytic Performance Evaluation,” Journal of Materials Science 55, no. 24 (2020): 10388–98. doi:10.1007/s10853-020-04699-z.
  • M. Tanhaei, A. R. Mahjoub, and V. Safarifard, “Energy-Efficient Sonochemical Approach for the Preparation of Nanohybrid Composites from Graphene Oxide and Metal-Organic Framework,” Inorganic Chemistry Communications 102 (2019): 185–91. doi:10.1016/j.inoche.2019.02.024.
  • Z. Saedi, V. Safarifard, and A. Morsali, “Dative and Covalent-Dative Postsynthetic Modification of a Two-Fold Interpenetration Pillared-Layer MOF for Heterogeneous Catalysis: A Comparison of Catalytic Activities and Reusability,” Microporous and Mesoporous Materials 229 (2016): 51–8. doi:10.1016/j.micromeso.2016.04.017.
  • Z. Saedi, M. Yaghma, A. Morsali, and M. Roushani, “Encapsulated Phosphomolybdic Acid in TMU-16 Metal Organic Framework: Study the Catalytic Activity and Structural Stability Dependent on Synthetic Solvent,” Inorganic Chemistry Communications 86 (2017): 159–64. doi:10.1016/j.inoche.2017.10.014.
  • M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau, and D. Maspoch, “Selective CO2 Capture in Metal–Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis,” Crystal Growth and Design 14, no. 5 (2014): 2092–6. doi:10.1021/cg500033b.
  • A. R. Abbasi, and S. Hatami, “Comparison of Structure of Nano Zinc Metal–Organic Frameworks upon Uptake and Release of Phenazopyridine Hydrochloride,” Journal of Inorganic and Organometallic Polymers and Materials 27, no. 6 (2017): 1941–9. doi:10.1007/s10904-017-0618-5.
  • R. J. Kalbasi, and A. Khojastegi, “Fabrication of Bimetallic Ag-Co Nanoparticle Deposited on Hierarchical ZSM-5 as a Selective Catalyst for Synthesis of Propargylamine in Water via Multicomponent A3 Coupling,” ChemistrySelect 3, no. 44 (2018): 12666–75. doi:10.1002/slct.201803011.
  • N. P. Eagalapati, A. Rajack, and Y. L. N. Murthy, “Nano-Size ZnS: A Novel, Efficient and Recyclable Catalyst for A3-Coupling Reaction of Propargylamines,” Journal of Molecular Catalysis A: Chemical 381 (2014): 126–31. doi:10.1016/j.molcata.2013.10.009.
  • H. Alinezhad, K. Pakzad, and M. Nasrollahzadeh, “Efficient Sonogashira and A3 Coupling Reactions Catalyzed by Biosynthesized Magnetic Fe3O4@ Ni Nanoparticles from Euphorbia Maculata Extract,” Applied Organometallic Chemistry 34 (2020): e5473.
  • V. Panwar, and S. L. Jain, “Ternary Hybrid TiO2-PANI-AuNPs for Photocatalytic A3-Coupling of Aldehydes, Amines and Alkynes: first Photochemical Synthesis of Propargyl Amines,” Materials Science & Engineering. C, Materials for Biological Applications 99 (2019): 191–201. doi:10.1016/j.msec.2019.01.085.
  • M. Gholinejad, F. Zareh, and C. Najera, “Iron Oxide Modified with Pyridyl-Triazole Ligand for Stabilization of Gold Nanoparticles: An Efficient Heterogeneous Catalyst for A3 Coupling Reaction in Water,” Applied Organometallic Chemistry 32, no. 9 (2018): e4454. doi:10.1002/aoc.4454.
  • J.-L. Huang, D. G. Gray, and C.-J. Li, “A(3)-Coupling Catalyzed by Robust Au Nanoparticles Covalently Bonded to HS-Functionalized Cellulose Nanocrystalline Films,” Beilstein Journal of Organic Chemistry 9 (2013): 1388–96. doi:10.3762/bjoc.9.155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.