197
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Investigation of Biological Activity of New Oxazinoazepines: Application of Fe3O4/CuO/ZnO@MWCNT Magnetic Nanocomposite in Reduction of 4-Nitrophenol in Water

, &
Pages 2938-2959 | Received 30 Nov 2021, Accepted 18 Mar 2022, Published online: 05 Apr 2022

References

  • A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews 106 (2006): 17.
  • L. F. Tietze and N. N. Rackelmann, “Domino Reactions in the Synthesis of Heterocyclic Natural Products and Analogs,” Pure and Applied Chemistry 11 (2004): 1967.
  • A. Dömling and I. Ugi, “Multicomponent Reactions with Isocyanides,” Angewandte Chemie 39, no. 18 (2000): 3168–210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U.
  • J. Kolb, B. Beck, M. Almstetter, S. Heck, E. Herdtweck, and A. Domling, “New MCRs: The First 4-Component Reaction Leading to 2,4-Disubstituted Thiazoles,” Molecular Diversity 6, no. 3-4 (2003): 297–313. doi:10.1023/B:MODI.0000006827.35029.e4.
  • A. Domling, I. Ugi, and B. Werner, “The Chemistry of Isocyanides, Their MultiComponent Reactions and Their Libraries,” Molecules 8 (2003): 53–66.
  • R. S. Bon, B. V. Vliet, N. E. Sprenkels, R. F. Schmitz, F. J. J. Kanter, C. V. Stevens, M. Swart, F. M. Bickelhaupt, M. B. Groen, and R. V. Orru, “Multicomponent Synthesis of 2-Imidazolines,” The Journal of Organic Chemistry 70, no. 9 (2005): 3542–53.
  • L. Banfi, A. Basso, G. Guanti, N. Kielland, C. Repetto, and R. Riva, “Ugi Multicomponent Reaction Followed by an Intramolecular Nucleophilic Substitution: Convergent Multicomponent Synthesis of 1-Sulfonyl 1,4-Diazepan-5-Ones and of Their Benzo-Fused Derivatives,” The Journal of Organic Chemistry 72, no. 6 (2007): 2151–60.
  • C. V. Galliford and K. A. Scheidt, “Catalytic Multicomponent Reactions for the Synthesis of N-Aryl Trisubstituted Pyrroles,” The Journal of Organic Chemistry 72, no. 5 (2007): 1811–3.
  • A. Barbero, A. Diez-Varga, F. J. Pulido, and A. González-Ortega, “Synthesis of Azepane Derivatives by Silyl-aza-Prins Cyclization of Allylsilyl Amines: Influence of the Catalyst in the Outcome of the Reaction,” Organic Letters 18, no. 9 (2016): 1972–5.
  • E. Cini, G. Bifulco, G. Menchi, M. Rodriquez, and M. Taddei, “Synthesis of Enantiopure 7-Substituted Azepane-2-Carboxylic Acids as Templates for Conformationally Constrained Peptidomimetics,” European Journal of Organic Chemistry 2012, no. 11 (2012): 2133–41. doi:10.1002/ejoc.201101387.
  • A. Hameed, S. Javed, R. Noreen, T. Huma, S. Iqbal, H. Umbreen, T. Gulzar, and T. Farooq, “Facile and Green Synthesis of Saturated Cyclic Amines,” Molecules 22, no. 10 (2017): 1691.
  • A. Nortcliffe and C. J. Moody, “Seven-Membered Ring Scaffolds for Drug Discovery: Access to Functionalised Azepanes and Oxepanes through Diazocarbonyl Chemistry,” Bioorganic & Medicinal Chemistry 23, no. 11 (2015): 2730–5. doi:10.1016/j.bmc.2015.01.010.
  • D. G. Wishka, M. Bédard, K. E. Brighty, R. A. Buzon, K. A. Farley, M. W. Fichtner, G. S. Kauffman, J. Kooistra, J. G. Lewis, H. O'Dowd, et al., “An Asymmetric Synthesis of (2S,5S)-5-Substituted Azepane-2-Carboxylate Derivatives,” The Journal of Organic Chemistry 76, no. 6 (2011): 1937–40.
  • O. René, I. A. Stepek, A. Gobbi, B. P. Fauber, and S. Gaines, “Palladium-Catalyzed Ring Expansion of Spirocyclopropanes to Form Caprolactams and Azepanes,” The Journal of Organic Chemistry 80, no. 20 (2015): 10218–25. doi:10.1021/acs.joc.5b01846.
  • B. Drouillat, I. V. Dorogan, M. Kletskii, O. N. Burov, and F. Couty, “Competitive Ring Expansion of Azetidines into Pyrrolidines and/or Azepanes,” The Journal of Organic Chemistry 81, no. 15 (2016): 6677–85. doi:10.1021/acs.joc.6b01325.
  • J. Choi, N. N. Yadav, and H. J. Ha, “Preparation of a Stable Bicyclic Aziridinium Ion and Its Ring Expansion toward Piperidines and Azepanes,” Asian Journal of Organic Chemistry 6, no. 9 (2017): 1292–307. doi:10.1002/ajoc.201700080.
  • D. V. Yarmoliuk, D. Serhiichuk, V. Smyrnov, A. V. Tymtsunik, O. V. Hryshchuk, Y. Kuchkovska, and O. O. Grygorenko, “Synthesis of Azabicyclo[n.1.0]alkane-Derived Bifunctional Building Blocks via the Corey–Chaykovsky Cyclopropanation,” Tetrahedron Letters 59, no. 52 (2018): 4611–5. doi:10.1016/j.tetlet.2018.11.047.
  • J. Zhou and Y. Y. Yeung, “N-Bromosuccinimide-Induced Aminocyclization-Aziridine Ring-Expansion Cascade: An Asymmetric and Highly Stereoselective Approach Toward the Synthesis of Azepane,” Organic Letters 16, no. 8 (2014): 2134–7. doi:10.1021/ol5005609.
  • S. S. Gholap, “Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents,” European Journal of Medicinal Chemistry 110 (2016): 13–31. doi:10.1016/j.ejmech.2015.12.017.
  • H. Fan, J. Peng, M. T. Hamann, and J.-F. Hu, “Lamellarins and Related Pyrrole-Derived Alkaloids from Marine Organisms,” Chemical Reviews 108, no. 1 (2008): 264–87. doi:10.1021/cr078199m.
  • R. W. Bürli, D. McMinn, J. A. Kaizerman, W. Hu, Y. Ge, Q. Pack, V. Jiang, M. Gross, M. Garcia, R. Tanaka, et al., “DNA Binding Ligands Targeting Drug-Resistant Gram-Positive Bacteria. Part 1: Internal Benzimidazole Derivatives,” Bioorganic & Medicinal Chemistry Letters 14, no. 5 (2004): 1253–7. (2003) doi:10.1016/j.bmcl.2003.12.042.
  • M. N. Narule, M. K. Gaidhane, and P. K. Gaidhane, “Synthesis, Characterization, Biologically and Antioxidant Active of Some 2-Substitued 3,5-Dimethyl-4-Ethoxy Carbonyl Pyrrole Derivatives,” Journal of Pharmacy Research 6, no. 6 (2013): 626–32. doi:10.1016/j.jopr.2013.04.046.
  • C. Battilocchio, G. Poce, S. Alfonso, G. C. Porretta, S. Consalvi, L. Sautebin, S. Pace, A. Rossi, C. Ghelardini, L. Di Cesare Mannelli, et al., “Schenone S A Class of Pyrrole Derivatives Endowed with Analgesic/anti-Inflammatory Activity,” Bioorganic & Medicinal Chemistry 21, no. 13 (2013): 3695–701. doi:10.1016/j.bmc.2013.04.031.
  • S. D. Joshi, S. R. Dixit, M. N. Kirankumar, T. M. Aminabhavi, K. V. S. N. Raju, R. Narayan, C. Lherbet, and K. S. Yang, “Synthesis, Antimycobacterial Screening and Ligand-Based Molecular Docking Studies on Novel Pyrrole Derivatives Bearing Pyrazoline, Isoxazole and Phenyl Thiourea Moieties,” European Journal of Medicinal Chemistry 107 (2016): 133–52. doi:10.1016/j.ejmech.2015.10.047.
  • A. Kamal, G. Ramakrishna, V. L. Nayak, P. Raju, A. S. Rao, A. Viswanath, M. V. P. S. Vishnuvardhan, S. Ramakrishna, and G. Srinivas, “Design and Synthesis of Benzo[c,d]Indolone-Pyrrolobenzodiazepine Conjugates as Potential Anticancer Agents,” Bioorganic & Medicinal Chemistry 20, no. 2 (2012): 789–800. doi:10.1016/j.bmc.2011.12.003.
  • R. Sahay, J. Sundaramurthy, P. Suresh Kumar, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, “Synthesis and Characterization of CuO Nanofibers, and Investigation for Its Suitability as Blocking Layer in ZnO NPs Based Dye Sensitized Solar Cell and as Photocatalyst in Organic Dye Degradation,” Journal of Solid State Chemistry 186 (2012): 261–7. doi:10.1016/j.jssc.2011.12.013.
  • B.-T. Zhang, X. Zheng, H.-F. Li, and J.-M. Lin, “Application of Carbon-Based Nanomaterials in Sample Preparation: A Review,” Analytica Chimica Acta 784 (2013): 1–17. doi:10.1016/j.aca.2013.03.054.
  • I. E. Wachs, “Recent Conceptual Advances in the Catalysis Science of Mixed Metal Oxide Catalytic Materials,” Catalysis Today 100, no. 1-2 (2005): 79–94. doi:10.1016/j.cattod.2004.12.019.
  • Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, and Y. Yang, “Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry,” Chemical Society Reviews 43, no. 10 (2014): 3480–524. doi:10.1039/c3cs60282f.
  • A. Daştan, A. Kulkarni, and B. Török, “Environmentally Benign Synthesis of Heterocyclic Compounds by Combined Microwave-Assisted Heterogeneous Catalytic Approaches,” Green Chemistry 14, no. 1 (2012): 17–37. doi:10.1039/C1GC15837F.
  • M. Jabłonska and R. Palkovits, “Investigation of the Active Species in the Carbon-Supported Gold Catalyst for Acetylene Hydrochlorination,” Catalysis Science & Technology 6 (2016): 49–72.
  • J. Shi, “On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts,” Chemical Reviews 113, no. 3 (2013): 2139–81. doi:10.1021/cr3002752.
  • S. Lin-Bing, L. Xiao-Qin, and Z. Hong-Cai, “Design and Fabrication of Mesoporous Heterogeneous Basic Catalysts,” Chemical Society Reviews 44 (2015): 5092–147.
  • Q. Zhang, K. D. V. Vigier, S. Royer, and F. Jerome, “Deep Eutectic Solvents: syntheses, Properties and Applications,” Chemical Society Reviews 41, no. 21 (2012): 7108–46. doi:10.1039/c2cs35178a.
  • E. Kalantari, M. A. Khalilzadeh, D. Zareyee, and M. Shokouhimehr, “Catalytic Degradation of Organic Dyes Using Green Synthesized Fe3O4-Cellulose-Copper Nanocomposites,” Journal of Molecular Structure 1218 (2020): 128488. doi:10.1016/j.molstruc.2020.128488.
  • M. A. Khalilzadeh, S. Hosseini, A. S. Rad, and R. A. Venditti, “Synthesis of Grafted Nanofibrillated Cellulose-Based Hydrogel and Study of Its Thermodynamic, Kinetic, and Electronic Properties,” Journal of Agricultural and Food Chemistry 68, no. 32 (2020): 8710–9. doi:10.1021/acs.jafc.0c03500.
  • U. Heiz and E. L. Bullock, “Fundamental Aspects of Catalysis on Supported Metal Clusters,” Journal of Materials Chemistry 14, no. 4 (2004): 564–77. doi:10.1039/b313560h.
  • E. Rafiee and S. Eavani, “Heterogenization of Heteropoly Compounds: A Review of Their Structure and Synthesis,” RSC Advances 6, no. 52 (2016): 46433–66. doi:10.1039/C6RA04891A.
  • J. R. Copeland, I. A. Santillan, S. M. Schimming, J. L. Ewbank, and C. Sievers, “Surface Interactions of Glycerol with Acidic and Basic Metal Oxides,” The Journal of Physical Chemistry C 117, no. 41 (2013): 21413–25. doi:10.1021/jp4078695.
  • L. D. Trizio and L. Manna, “Forging Colloidal Nanostructures via Cation Exchange Reactions,” Chemical Reviews 116, no. 18 (2016): 10852–87. doi:10.1021/acs.chemrev.5b00739.
  • P. Xiaoyang, Y. Min-Quan, F. Xianzhi, Z. Nan, and X. Yi-Jun, “Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications,” Nanoscale 5, no. 9 (2013): 3601–14. doi:10.1039/c3nr00476g.
  • B. F. G. Johnson, “Nanoparticles in Catalysis,” Topics in Catalysis 24, no. 1-4 (2003): 147–59. doi:10.1023/B:TOCA.0000003086.83434.b6.
  • M. B. Gawande, P. S. Branco, K. Parghi, J. J. Shrikhande, R. K. Pandey, C. A. A. Ghumman, N. Bundaleski, O. Teodoro, and R. V. Jayaram, “Synthesis and Characterization of Versatile MgO–ZrO2 Mixed Metal Oxide Nanoparticles and Their Applications,” Catalysis Science & Technology 1, no. 9 (2011): 1653–64. doi:10.1039/c1cy00259g.
  • S. Brauch, S. S. van Berkel, and W. Westermann, “Higher-Order Multicomponent Reactions: Beyond Four Reactants,” Chemical Society Reviews 42, no. 12 (2013): 4948–62. doi:10.1039/c3cs35505e.
  • H. Y. Cho and J. P. Morken, “Catalytic Bismetallative Multicomponent Coupling Reactions: scope, Applications, and Mechanisms,” Chemical Society Reviews 43, no. 13 (2014): 4368–80. doi:10.1039/c3cs60482a.
  • B. Eftekhari-Sis, M. Zirak, and A. Akbari, “Arylglyoxals in Synthesis of Heterocyclic Compounds,” Chemical Reviews 113, no. 5 (2013): 2958–3043. doi:10.1021/cr300176g.
  • K. Sambasivarao, C. S. Arjun, and G. Deepti, “Diversity-Oriented Approaches to Polycyclics and Bioinspired Molecules via the Diels−Alder Strategy: Green Chemistry, Synthetic Economy, and Beyond,” ACS Combinatorial Science 17 (2015): 253–302.
  • B. H. Rotstein, S. Zaretsky, V. Rai, and A. K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114, no. 16 (2014): 8323–59. doi:10.1021/cr400615v.
  • M. S. Singh and S. Chowdhury, “Recent Developments in Solvent-Free Multicomponent Reactions: A Perfect Synergy for Eco-Compatible Organic Synthesis,” RSC Advances 2, no. 11 (2012): 4547–92. doi:10.1039/c2ra01056a.
  • S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, “Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications,” Chemical Reviews 108, no. 6 (2008): 2064–110. doi:10.1021/cr068445e.
  • A. Corma and H. Garcia, “Supported Gold Nanoparticles as Catalysts for Organic Reactions,” Chemical Society Reviews 37, no. 9 (2008): 2096–126. doi:10.1039/b707314n.
  • V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, and J. M. Basset, “Magnetically Recoverable Nanocatalysts,” Chemical Reviews 111, no. 5 (2011): 3036–75. doi:10.1021/cr100230z.
  • R. Prasad and P. Singh, “A Novel Route of Single Step Reactive Calcination of Copper Salts Far below Their Decomposition Temperatures for Synthesis of Highly Active Catalysts,” Catalysis Science & Technology 3, no. 12 (2013): 3326–34. doi:10.1039/c3cy00626c.
  • A. Maleki, R. Firouzi-Haji, and Z. Hajizadeh, “Magnetic Guanidinylated Chitosan Nanobiocomposite: A Green Catalyst for the Synthesis of 1,4-Dihydropyridines,” International Journal of Biological Macromolecules 116 (2018): 320–6. doi:10.1016/j.ijbiomac.2018.05.035.
  • Z. Hajizadeh and A. Maleki, “Poly(ethylene imine)-Modified Magnetic Halloysite Nanotubes: A Novel, Efficient and Recyclable Catalyst for the Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives,” Molecular Catalysis 460 (2018): 87–93. doi:10.1016/j.mcat.2018.09.018.
  • R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel Biocompatible Core-Shell Magnetic Nanocomposite Based on Cross-linked Chitosan Hydrogels for In Vitro Hyperthermia of Cancer Therapy,” International Journal of Biological Macromolecules 140 (2019): 407–14. doi:10.1016/j.ijbiomac.2019.08.031.
  • A. Maleki, M. Ghassemi, and R. Firouzi-Haji, “Green Multicomponent Synthesis of Four Different Classes of Six-Membered N -Containing and O -Containing Heterocycles Catalyzed by an Efficient Chitosan-Based Magnetic Bionanocomposite,” Pure and Applied Chemistry 90, no. 2 (2018): 387–94. doi:10.1515/pac-2017-0702.
  • S. Asgharnasl, R. Eivazzadeh-Keihan, F. Radinekiyan, and A. Maleki, “Preparation of a Novel Magnetic Bionanocomposite Based on Factionalized Chitosan by Creatine and Its Application in the Synthesis of Polyhydroquinoline, 1,4-Dyhdropyridine and 1,8-Dioxo-Decahydroacridine Derivatives,” International Journal of Biological Macromolecules 144 (2020): 29–46. doi:10.1016/j.ijbiomac.2019.12.059.
  • M. Nasrollahzadeh, M. Maham, A. Rostami-Vartooni, M. Bagherzadeh, and S. M. Sajadi, “Barberry Fruit Extract Assisted in Situ Green Synthesis of Cu Nanoparticles Supported on a Reduced Graphene Oxide–Fe3O4 Nanocomposite as a Magnetically Separable and Reusable Catalyst for the O-Arylation of Phenols with Aryl Halides under Ligand-Free Conditions,” RSC Advances 5, no. 79 (2015): 64769–80. doi:10.1039/C5RA10037B.
  • (a) I. M. Banat, P. Nigam, D. Singh and R. Marchant, “Catalytic Degradation of Organic Dyes using Biosynthesized Silver Nanoparticles.” Micron (Oxford, England: 1993) 56 (2014): 54–62; (b) C. A. Martinez-Huitle and E. Brillas, “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review,” Applied Catalysis B 87 (2009): 105; (c) V. K. Vidhu and D. Philip, “Catalytic degradation of organic dyes using biosynthesized silver nanoparticles,” Micron, 56 (2014): 54–62.
  • (a) B. Manu and S. Chaudhari, “Anaerobic Decolorization of Simulated Textile Wastewater Containing Azo Dyes,” Bioresource Technology 82 (2002): 225; (b) R. Patel and S. Suresh, “Decolourization of azo dyes using magnesium–palladium system,” Journal of Hazardous Materials B, 137 (2006): 1729; (c) L. G. Devi, S. G. Kumar, K. M. Reddy, and C. Munikrishnappa, “Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism,” Journal of Hazardous Materials 164 (2009): 459–467.
  • A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man, “ZnO Nanostructures: Growth, Properties and Applications,” Journal of Materials Chemistry 22, no. 14 (2012): 6526–35. doi:10.1039/c2jm15548f.
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31 (1999), 261–272; (b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia odoratissima Mozaff in Model and Food Systems,” Food Chemistry 105 (2007) 57–64.
  • A. M. Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica oleracea L. var. italica,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–43. doi:10.1007/s11947-009-0196-9.
  • L. Liu and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Reviews 60 (2002): 368–71.
  • (a) I. Yavari and Z. S. Hossaini, “Synthesis of Fused α-Methylene-γ-butyrolactone Derivatives Through Pyridine-Induced Addition of Phenols to Dimethyl Acetylenedicarboxylate,” Tetrahedron Letters 47 (2006): 4465–68; (b) M. Ghasemian Dazmiri, H. Alinezhad, Z. S. Hossaini, and A. R. Bekhradnia, “Green Synthesis of Fe3O4/ZnO Magnetic Core‐Shell Nanoparticles by Petasites hybridus Rhizome Water Extract and Their Application for the Synthesis of Pyran Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Applied Organometallic Chemistry, 34 (2020): e5731; (c) S. F. Mousavi, Z. S. Hossaini, F. Rostami‐Charati, and N. Nami, “Green Synthesis of Pyrrolo Isoquinolines using In Situ Synthesis of 4‐Hydroxycumarines: Study of Antioxidant Activity,” Journal of Heterocyclic Chemistry 57 (2020): 3868–81; (d) S. A. Moghaddas, Z. S. Hossaini, and D. Zareyee, “Green Synthesis and Investigation of Antioxidant Ability New Pyrazines Containing Pyrrolo[2, 1‐a]isoquinolines Derivatives,” Journal of Heterocyclic Chemistry 57 (2020): 3856–67.
  • (a) F. Gholami Orimi, B. Mirza, and Z. S. Hossaini, “Production of Benzazepine Derivatives via Four-Component Reaction of Isatins: Study of Antioxidant Activity,” Molecular Diversity, 25 (2021): 2171-2182; (b) Sh. Sharafian, Z. S. Hossaini, F. Rostami-Charati, and M. A. Khalilzadeh, “Ultrasound-Promoted Green Synthesis of Pyrido[2, 1-a]isoquinoline Derivatives and Studies on their Antioxidant Activity,” Combinatorial Chemistry & High Throughput Screening, 24 (2021): 119–128; (c) A. Hajipour Najar, Z. S. Hossaini, S. Abdolmohammadi, and D. Zareyee, “ZnO-nanorods Promoted Synthesis of α-amino Nitrile Benzofuran Derivatives using One-pot Multicomponent Reaction of Isocyanides,” Combinatorial Chemistry & High Throughput Screening 23 (2020): 345–55; (d) N. Tabarsaei, N. Faal Hamedani, Sh. Shafiee, S. Khandan, and Z. S. Hossaini, “Catalyst‐free Green Synthesis and Study of Antioxidant Activity of New Pyrazole Derivatives,” Journal of Heterocyclic Chemistry 57 (2020): 2945–54.
  • S. H. Adyani, E. Soleimani, and Z. S. Hossaini, “Silver and Copper–Magnetite Nanocomposites as Green and Magnetic Recoverable Catalysts for the Preparation of Cyclopentadiene Derivatives from a Tri-Component Condensation,” Reaction Kinetics, Mechanisms and Catalysis 128, no. 2 (2019): 885–901. doi:10.1007/s11144-019-01670-1.
  • S. Zandieh, N. Nami, and Z. S. Hossaini, “Ionic Liquid an Efficient Solvent and Catalyst for Synthesis of 1-Aminoalkyl-2-Naphthol and Naphthoxazine Derivatives,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 38, no. 4 (2019): 27–35.
  • (a) Z. S. Hossaini, D. Zareyee, F. Sheikholeslami-Farahani, S. Vaseghi, and A. Zamani, “ZnO-NR as the Efficient Catalyst for the Synthesis of New Thiazole and Cyclopentadienone Phosphonate Derivatives in Water,” Heteroatom Chemistry 28 (2017): e21362; (b) F. Rostami-charati, Z. S. Hossaini, D. Zareyee, S. Afrashteh, and M. Hosseinzadeh, “ZnO‐Nanorods as an Efficient Catalyst for the Synthesis of 1,3‐Thiazolidine Derivatives by Aqueous Multicomponent Reactions of Isothiocyanates,” Journal of Heterocyclic Chemistry 54 (2017): 1937–42. doi:10.1002/hc.21362.
  • (a) F. Rostami-Charati, Z. S. Hossaini, R. Rostamian, A. Zamani, and M. Abdoli, “Green Synthesis of Indol-2-one derivatives from N-alkylisatins in the Presence of KF/Clinoptilolite Nanoparticles,” Chemistry of Heterocyclic Compounds 53 (2017): 480–83; (b) S. Rezayati, F. Sheikholeslami-Farahani, Z. S. Hossaini, R. Hajinasiri, and S. Afshari Sharif Abad, “Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds Using a Novel Bronsted Acidic Ionic Liquid,” Combinatorial Chemistry & High Throughput Screening 9 (2016): 720–27. doi:10.1007/s10593-017-2077-x.
  • (a) I. Yavari, M. Sabbaghan, and Z. S. Hossaini, “Proline-Promoted Efficient Synthesis of 4-Aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones in Aqueous Media,” Synlett 4 (2008) 1153–54; (b) F. Tavakolinia, T. Baghipour, Z. S. Hossaini, D. Zareyee, and M. A. Khalilzadeh, “Antiproliferative Activity of Novel Thiopyran Analogs on MCF-7 Breast and HCT-15 Colon Cancer Cells: Synthesis, Cytotoxicity, Cell Cycle Analysis, and DNA-Binding,” Nucleic Acid Therapeutics 22 (2012): 265–70.
  • (a) I. Yavari, S. Seyfi, Z. S. Hossaini, M. Sabbaghan, and F. Shirgahi-Talari, “Efficient Synthesis of 2-Thioxo-1,3-thiazolanes from Primary Amines, CS2, and Ethyl Bromopyruvate.” Monatshefte für Chemie-Chemical Monthly 139 (2008): 1479–82; (b) M. A. Khalilzadeh, Z. S. Hossaini, M. M. Baradarani, and A. Hasannia, “A Novel Isocyanide-Based Three-Component Reaction: A Facile Synthesis of Substituted 2H-Pyran-3, 4-Dicarboxylates.” Tetrahedron 66 (2010): 8464–67; (c) R. Hajinasiri, Z. S. Hossaini, and F. Rostami‐Charati, “Efficient Synthesis of α‐Aminophosphonates via One‐Pot Reactions of Aldehydes, Amines, and Phosphates in Ionic Liquid,” Heteroatom Chemistry 22 (2011): 625–29.
  • (a) F. Rostami-Charati, Z. S. Hossaini, and M. R. Hosseini-Tabatabaei, “A Simple Synthesis of Oxaphospholes,” Phosphorus, Sulfur, and Silicon and the Related Elements 186 (2011): 1443–48; (b) S. Rezayati, F. Sheikholeslami-Farahani, Z. S. Hossaini, and R. Hajinasiri, “Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds using a Novel Bronsted Acidic Ionic Liquid.” Combinatorial Chemistry & High Throughput Screening 19 (2016): 720–27; (c) F. Rostami-Charati, Z. S. Hossaini, F. Sheikholeslami-Farahani, and Z. Aziz, “Synthesis of 9H-Furo [2, 3-f]Chromene Derivatives by Promoting ZnO Nanoparticles,” Combinatorial Chemistry & High Throughput Screening 18 (2015): 872–80.
  • I. Yavari, M. Ghazanfarpour-Darjani, Z. S. Hossaini, M. Sabbaghan, and N. Hosseini, “Methoxide Ion Promoted Efficient Synthesis of 1,3-Oxathiolane-2-Thiones by Reaction of Oxiranes and Carbon Disulfide,” Synlett 2008, no. 6 (2008): 889–91. doi:10.1055/s-2008-1042927.
  • I. Yavari, M. Nematpour, and Z. S. Hossaini, “Ph3P-Mediated One-Pot Synthesis of Functionalized 3, 4-Dihydro-2 H-1, 3-Thiazines from N, N′-Dialkylthioureas and Activated Acetylenes in Water,” Monatshefte für Chemie - Chemical Monthly 141, no. 2 (2010): 229–32. doi:10.1007/s00706-009-0247-y.
  • I. Yavari, Z. S. Hossaini, S. Souri, and S. Seyfi, “Diastereoselective Synthesis of Fused [1, 3]Thiazolo[1, 3]oxazins and [1, 3]Oxazino[2, 3-b][1, 3]benzothiazoles,” Molecular Diversity 13, no. 4 (2009): 439–43. doi:10.1007/s11030-009-9128-x.
  • I. Yavari and Z. S. Hossaini, “Synthesis of Fused α-Methylene-γ-Butyrolactone Derivatives through Pyridine-Induced Addition of Phenols to Dimethyl Acetylenedicarboxylate,” Tetrahedron Letters 47, no. 26 (2006): 4465–8. doi:10.1016/j.tetlet.2006.04.042.
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–8. doi:10.1021/jf00018a005.
  • G. C. Yen and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–32. doi:10.1021/jf00039a005.
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–9. doi:10.1021/jf0103572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.