196
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Biological Examination of Novel Tetra Pyranopyrimidine Heterocycles Contained Lipophilic Spacers

, ORCID Icon, &
Pages 2990-3001 | Received 14 Jan 2022, Accepted 24 Mar 2022, Published online: 15 Apr 2022

References

  • A. Dömling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews 106, no. 1 (2006): 17–89. doi:10.1021/cr0505728.
  • A. Maleki, V. Eskandarpour, J. Rahimi, and N. Hamidi, “Cellulose Matrix Embedded Copper Decorated Magnetic Bionanocomposite as a Green Catalyst in the Synthesis of Dihydropyridines and Polyhydroquinolines,” Carbohydrate Polymers 208 (2019): 251–60. doi:10.1016/j.carbpol.2018.12.069.
  • A. R. Bhat, A. H. Shalla, and R. S. Dongre, “Synthesis of New Annulated Pyrano [2, 3-d] Pyrimidine Derivatives Using Organo Catalyst (DABCO) in Aqueous Media,” Journal of Saudi Chemical Society 21 (2017): S305–S310. doi:10.1016/j.jscs.2014.03.008.
  • S. Makarem, A. Mohammadi, and A. Fakhari, “A Multi-Component Electro-Organic Synthesis of 2-Amino-4H-Chromenes,” Tetrahedron Letters 49, no. 50 (2008): 7194–6. doi:10.1016/j.tetlet.2008.10.006.
  • H. M. Aly and M. M. Kamal, “Efficient One-Pot Preparation of Novel Fused Chromeno[2,3-d]Pyrimidine and Pyrano[2,3-d]Pyrimidine Derivatives,” European Journal of Medicinal Chemistry 47, no. 1 (2012): 18–23. doi:10.1016/j.ejmech.2011.09.040.
  • G. Brahmachari and B. Banerjee, “Facile and One-Pot Access to Diverse and Densely Functionalized-2-Amino-3-Cyano-4 H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst,” ACS Sustainable Chemistry & Engineering 2, no. 3 (2014): 411–22. doi:10.1021/sc400312n.
  • S. Maddila, K. Nagaraju, and S. B. Jonnalagadda, “Synthesis and Antimicrobial Evaluation of Novel Pyrano [2, 3-d]-Pyrimidine Bearing 1, 2, 3-Triazoles,” Chemical Data Collections 28 (2020): 100486. doi:10.1016/j.cdc.2020.100486.
  • F. Eiden and F. Denk, “Synthesis of CNS-Activity of Pyran Derivatives: 6,8-Dioxabicyclo(3,2,1)Octane,” Archiv Der Pharmazie 324, no. 6 (1991): 353–4. doi:10.1002/ardp.19913240606.
  • A. H. F. Abd El-Wahab, H. M. Mohamed, A. M. El-Agrody, and A. H. Bedair, “The Chemical Reactivity of Naphthols and Their Derivatives toward α-Cyanocinnamonitriles and Ethyl α-Cyanocinnamates: A Review of Synthesis, Reactions and Applications of Naphthopyrano,” European Journal of Chemistry 4, no. 4 (2013): 467–83. doi:10.5155/eurjchem.4.4.467-483.775.
  • C. Shishoo, M. Devani, G. Ullas, S. Ananthan, and V. Bhadti, “Studies in the Synthesis and Interconversion of Isomeric Triazolothienopyrimidines,” Journal of Heterocyclic Chemistry 18, no. 1 (1981): 43–6. doi:10.1002/jhet.5570180109.
  • C. Shishoo, M. Devani, G. Ullas, S. Ananthan, and V. Bhadti, “Studies on the Synthesis of 2‐(2‐Arylvinyl) Thieno [2, 3‐d] Pyrimidines and 5‐(2‐Arylvinyl) Triazolothieno [3, 2‐e] Pyrimidines,” Journal of Heterocyclic Chemistry 22, no. 3 (1985): 825–30.
  • M. A. M. A. Reheim, I. S. A. Hafiz, and S. Mohamed, “Utility of β-Diketones in Heterocyclic Synthesis: Synthesis of New Tetrahydro-Pyrimidinethione, Pyrazole, Thiophene, Dihydropyridine, Dihydropyrane, Pyridazine Derivatives and Investigation of Their Antimicrobial Activity,” European Journal of Chemistry 7, no. 3 (2016): 298–308. doi:10.5155/eurjchem.7.3.298-308.1447.
  • M. Mohsenimehr, M. Mamaghani, F. Shirini, M. Sheykhan, and F. A. Moghaddam, “One-Pot Synthesis of Novel Pyrido [2, 3-d] Pyrimidines Using HAp-Encapsulated-γ-Fe2O3 Supported Sulfonic Acid Nanocatalyst under Solvent-Free Conditions,” Chinese Chemical Letters 25, no. 10 (2014): 1387–91. doi:10.1016/j.cclet.2014.04.025.
  • L. Yang, D. Shi, S. Chen, H. Chai, D. Huang, Q. Zhang, and J. Li, “Microwave-Assisted Synthesis of 2, 3-Dihydropyrido [2, 3-d] Pyrimidin-4 (1 H)-Ones Catalyzed by DBU in Aqueous Medium,” Green Chemistry 14, no. 4 (2012): 945–51. doi:10.1039/c2gc16469h.
  • Z. Ismail, M. Ghorab, E. Mohamed, H. Aly, and M. El-Gaby, “Antitumor Activity of Some Novel 1, 2, 5-Thiadiazole Derivatives,” Phosphorus, Sulfur, and Silicon 183, no. 10 (2008): 2541–54. doi:10.1080/10426500801967815.
  • M. El-Gaby, S. Abdel-Gawad, M. Ghorab, H. Heiba, and H. Aly, “Synthesis and Biological Activity of Some Novel Thieno [2, 3-b] Quinoline, Quinolino [3′, 2′: 4, 5] Thieno [3, 2-d] Pyrimidine and Pyrido [2′, 3′: 4, 5] Thieno [2, 3-b] Quinoline Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements 181, no. 2 (2006): 279–97. doi:10.1080/104265090970322.
  • Lucía Cordeu, Elena Cubedo, Eva Bandrés, Amaia Rebollo, Xabi Sáenz, Hector Chozas, Ma Victoria Domínguez, Mikel Echeverría, Beatriz Mendivil, Carmen Sanmartin, et al, “Biological Profile of New Apoptotic Agents Based on 2,4-Pyrido[2,3-d]Pyrimidine Derivatives,” Bioorganic & Medicinal Chemistry 15, no. 4 (2007): 1659–69. doi:10.1016/j.bmc.2006.12.010.
  • D. Kosk-Kosicka, I. Fomitcheva, and M. M. Lopez, “Mechanism of Inhibition of the Plasma Membrane Ca(2+)-ATPase by Barbiturates,” Biochemistry 35, no. 3 (1996): 900–5. doi:10.1021/bi9518757.
  • M. R. Bhosle, P. Andil, D. Wahul, G. M. Bondle, A. Sarkate, and S. V. Tiwari, “Straightforward Multicomponent Synthesis of Pyrano [2, 3-d] Pyrimidine-2, 4, 7-Triones in β-Cyclodextrin Cavity and Evaluation of Their Anticancer Activity,” Journal of the Iranian Chemical Society 16, no. 7 (2019): 1553–61. doi:10.1007/s13738-019-01633-2.
  • S.-H. Kim, A. T. Pudzianowski, K. J. Leavitt, J. Barbosa, P. A. McDonnell, W. J. Metzler, B. M. Rankin, R. Liu, W. Vaccaro, and W. Pitts, “Structure-Based Design of Potent and Selective Inhibitors of Collagenase-3 (MMP-13),” Bioorganic & Medicinal Chemistry Letters 15, no. 4 (2005): 1101–6. doi:10.1016/j.bmcl.2004.12.016.
  • D. M. Neumann, A. Cammarata, G. Backes, G. E. Palmer, and B. S. Jursic, “Synthesis and Antifungal Activity of Substituted 2,4,6-Pyrimidinetrione Carbaldehyde Hydrazones,” Bioorganic & Medicinal Chemistry 22, no. 2 (2014): 813–26. doi:10.1016/j.bmc.2013.12.010.
  • J. T. Bojarski, J. L. Mokrosz, H. J. Bartoń, and M. H. Paluchowska, “Recent Progress in Barbituric Acid Chemistry,” Advances in Heterocyclic Chemistry 38 (1985): 229–97.
  • N. R. Penthala, A. Ketkar, K. R. Sekhar, M. L. Freeman, R. L. Eoff, R. Balusu, and P. A. Crooks, “1-Benzyl-2-Methyl-3-Indolylmethylene Barbituric Acid Derivatives: Anti-Cancer Agents That Target Nucleophosmin 1 (NPM1),” Bioorganic & Medicinal Chemistry 23, no. 22 (2015): 7226–33. doi:10.1016/j.bmc.2015.10.019.
  • A. Holý, I. Votruba, M. Masojídková, G. Andrei, R. Snoeck, L. Naesens, E. De Clercq, and J. Balzarini, “6-[2-(Phosphonomethoxy)Alkoxy]Pyrimidines with Antiviral Activity,” Journal of Medicinal Chemistry 45, no. 9 (2002): 1918–29. doi:10.1021/jm011095y.
  • N. O. Mahmoodi, S. Ramzanpour, and F. Ghanbari Pirbasti, “One-Pot Multi-Component Synthesis of 1,4-Dihydropyridines Using Zn(2+) @KSF and Evaluating Their Antibacterial and Antioxidant Activities,” Archiv Der Pharmazie 348, no. 4 (2015): 275–82. doi:10.1002/ardp.201400414.
  • B. D. Dhorajiya, B. S. Bhakhar, and B. Z. Dholakiya, “Synthesis, Characterization, Solvatochromic Properties, and Antimicrobial Evaluation of 5-Acetyl-2-Thioxo-Dihydro-Pyrimidine-4, 6-Dione-Based Chalcones,” Medicinal Chemistry Research 22, no. 9 (2013): 4075–86. doi:10.1007/s00044-012-0395-1.
  • L. H. Li, T. L. Wallace, K. A. Richard, and D. E. Tracey, “Mechanism of Antitumor Action of Pyrimidinones in the Treatment of B16 Melanoma and P388 Leukemia,” Cancer Research 45, no. 2 (1985): 532–8.
  • L. Li, T. Wallace, R. Hamilton, and T. DeKoning, “Pharmacological Evaluation of Combination Therapy of P388 Leukemia with Cyclophosphamide and Pyrimidinones,” International Journal of Immunopharmacology 9, no. 1 (1987): 31–9. doi:10.1016/0192-0561(87)90108-1.
  • A. D. Broom, J. L. Shim, and G. L. Anderson, “Pyrido(2,3-d)Pyrimidines. IV. Synthetic Studies Leading to Various Oxopyrido(2,3-d)Pyrimidines,” The Journal of Organic Chemistry 41, no. 7 (1976): 1095–9. doi:10.1021/jo00869a003.
  • E. M. Grivsky, S. Lee, C. W. Sigel, D. S. Duch, and C. A. Nichol, “Synthesis and Antitumor Activity of 2,4-Diamino-6-(2,5-Dimethoxybenzyl)-5-Methylpyrido[2,3-d]Pyrimidine,” Journal of Medicinal Chemistry 23, no. 3 (1980): 327–9. doi:10.1021/jm00177a025.
  • A. R. Bhat, R. S. Dongre, F. A. Almalki, M. Berredjem, M. Aissaoui, R. Touzani, T. B. Hadda, and M. S. Akhter, “Synthesis, Biological Activity and POM/DFT/Docking Analyses of Annulated Pyrano[2,3-d]Pyrimidine Derivatives: Identification of Antibacterial and Antitumor Pharmacophore Sites,” Bioorganic Chemistry 106 (2021): 104480. doi:10.1016/j.bioorg.2020.104480.
  • D. Heber, C. Heers, and U. Ravens, “Positive Inotropic Activity of 5-Amino-6-Cyano-1, 3-Dimethyl-1,2,3,4-Tetrahydropyrido [2, 3-d] Pyrim Idine-2, 4-Dione in Cardiac Muscle from guinea-Pig and Man. Part 6: Compounds with Positive Inotropic Activity,” Die Pharmazie 48, no. 7 (1993): 537–41.
  • M. L. Deb and P. J. Bhuyan, “Synthesis of Some Novel Annulated Pyrido[2,3-d]Pyrimidines via Stereoselective Intramolecular hetero Diels-Alder Reactions of 1-Oxa-1,3-Butadienes,” Beilstein Journal of Organic Chemistry 6, no. 1 (2010): 11. doi:10.3762/bjoc.6.11.
  • L. R. Bennett, C. J. Blankley, R. W. Fleming, R. D. Smith, and D. K. Tessman, “Antihypertensive Activity of 6-Arylpyrido[2,3-d]Pyrimidin-7-Amine Derivatives,” Journal of Medicinal Chemistry 24, no. 4 (1981): 382–9. doi:10.1021/jm00136a006.
  • C. J. Blankley, L. R. Bennett, R. W. Fleming, R. D. Smith, D. K. Tessman, and H. R. Kaplan, “Antihypertensive Activity of 6-Arylpyrido[2,3-d]Pyrimidin-7-Amine Derivatives. 2. 7-Acyl Amide Analogues,” Journal of Medicinal Chemistry 26, no. 3 (1983): 403–11. doi:10.1021/jm00357a015.
  • C. Mohan, V. Kumar, and M. P. Mahajan, “A Facile Synthesis and Thio-Claisen Rearrangement of 3-Aryl-2-Phenyl-5-Prop-2-Ynylsulfanyl-3H-Pyrimidin-4-Ones: Regioselective Transformation to Thieno [3, 2-d] Pyrimidin-4-Ones,” Tetrahedron Letters 45, no. 31 (2004): 6075–7. doi:10.1016/j.tetlet.2004.05.121.
  • A. K. Sharma, S. Jayakumar, M. S. Hundal, and M. P. Mahajan, “Tandem Sigmatropic Shifts in [4 + 2] Cycloaddition Reactions of 1, 3-Diazabuta-1, 3-Dienes with Butadienylketene: Synthesis of Pyrimidinone Derivatives,” Journal of the Chemical Society, Perkin Transactions 1, no. 6 (2002): 774–84. doi:10.1039/b109922c.
  • S. Sasaki, N. Cho, Y. Nara, M. Harada, S. Endo, N. Suzuki, S. Furuya, and M. Fujino, “Discovery of a Thieno[2,3-d]Pyrimidine-2,4-Dione Bearing a p-Methoxyureidophenyl Moiety at the 6-Position: A Highly Potent and Orally Bioavailable Non-peptide Antagonist for the Human Luteinizing Hormone-Releasing Hormone Receptor,” Journal of Medicinal Chemistry 46, no. 1 (2003): 113–24. doi:10.1021/jm020180i.
  • S. Maddila, R. Pagadala, and S. B. Jonnalagadda, “1,2,4-Triazoles: A Review of Synthetic Approaches and the Biological Activity,” Letters in Organic Chemistry 10, no. 10 (2013): 693–714. doi:10.2174/157017861010131126115448.
  • S. V. Bhaskaruni, S. Maddila, W. E. van Zyl, and S. B. Jonnalagadda, “V2O5/ZrO2 as an Efficient Reusable Catalyst for the Facile, Green, One-Pot Synthesis of Novel Functionalized 1, 4-Dihydropyridine Derivatives,” Catalysis Today 309 (2018): 276–81. doi:10.1016/j.cattod.2017.05.038.
  • S. V. Bhaskaruni, S. Maddila, W. E. Zyl, and S. B. Jonnalagadda, “RuO2/ZrO2 as an Efficient Reusable Catalyst for the Facile, Green, One-Pot Synthesis of Novel Functionalized Halopyridine Derivatives,” Catalysis Communications 100 (2017): 24–8. doi:10.1016/j.catcom.2017.06.023.
  • J. Delaney, E. Clarke, D. Hughes, and M. Rice, “Modern Agrochemical Research: A Missed Opportunity for Drug Discovery?,” Drug Discovery Today 11, no. 17–18 (2006): 839–45. doi:10.1016/j.drudis.2006.07.002.
  • S. A. El-Assiery, G. H. Sayed, and A. Fouda, “Synthesis of Some New Annulated Pyrazolo-Pyrido (or Pyrano) Pyrimidine, Pyrazolopyridine and Pyranopyrazole Derivatives,” Acta Pharmaceutica (Zagreb, Croatia) 54, no. 2 (2004): 143–50.
  • H. Wamhoff and J. Muhr, “Reaktionen Von Uracilen; Ethoxypyrimido [4, 5-d] Pyrimidine Über Ein Uracil-Carbodiimid-Derivat Und Deren Aminolyse-Und Pyrolyse-Folgeprodukte,” Synthesis 1988, no. 11 (1988): 919–21. doi:10.1055/s-1988-27756.
  • E. Moosazadeh, E. Sheikhhosseini, D. Ghazanfari, and S. Soltaninejad, “One‐Pot Synthesis of Novel Polysubstituted Furopyran Derivatives via Pseudo Seven‐Component Reaction (6 + 1) of Isocyanides with Bisarylidene Meldrum's Acid Containing Ether Groups,” Journal of Heterocyclic Chemistry 57, no. 5 (2020): 2271–8. doi:10.1002/jhet.3949.
  • R. Rezae Tehrani, E. Sheikhhosseini, D. Ghazanfari, and M. R. Akhgar, “Synthesis of New Biological Functionalized Tetra Pyrimidodipyrimidines and Tetra Barbituric Moiety Conation Ether Groups,” Polycyclic Aromatic Compounds, no. 2021 (in press). doi:10.1080/10406638.2021.2009528.
  • E. Sheikhhosseini, E. Farrokhi, and M. A. Bigdeli, “Synthesis of Novel Tetrahydroquinoline Derivatives from α, α′-Bis (Substituted-Benzylidene) Cycloalkanones,” Journal of Saudi Chemical Society 20 (2016): S227–S230. doi:10.1016/j.jscs.2012.09.018.
  • E. Sheikhhosseini, “Design and Effective Synthesis of Novel Furo [2, 3-d] Pyrimidine Derivatives Containing Ethylene Ether Spacers,” Journal of Saudi Chemical Society 22, no. 3 (2018): 337–42. doi:10.1016/j.jscs.2016.05.005.
  • A. Rahman, M. I. Choudhary, and W. J. Thomsen, Bioassay Techniques for Drug Development (London: CRC Press, 2001).
  • C. G. Silva, R. S. Herdeiro, C. J. Mathias, A. D. Panek, C. S. Silveira, V. P. Rodrigues, M. N. Rennó, D. Q. Falcão, D. M. Cerqueira, A. B. M. Minto, et al, “Evaluation of Antioxidant Activity of Brazilian Plants,” Pharmacological Research 52, no. 3 (2005): 229–33. doi:10.1016/j.phrs.2005.03.008.
  • C. Alasalvar, M. Karamać, R. Amarowicz, and F. Shahidi, “Antioxidant and Antiradical Activities in Extracts of Hazelnut Kernel (Corylus Avellana L.) and Hazelnut Green Leafy Cover,” Journal of Agricultural and Food Chemistry 54, no. 13 (2006): 4826–32. doi:10.1021/jf0601259.
  • P. Molyneux, “The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity,” Songklanakarin Journal of Science and Technology 26, no. 2 (2004): 211–9.
  • F. Liu, V. Ooi, and S. Chang, “Free Radical Scavenging Activities of Mushroom Polysaccharide Extracts,” Life Sciences 60, no. 10 (1997): 763–71. doi:10.1016/s0024-3205(97)00004-0.
  • Y. Mizushima and M. Kobayashi, “Interaction of Anti-Inflammatory Drugs with Serum Proteins, Especially with Some Biologically Active Proteins,” The Journal of Pharmacy and Pharmacology 20, no. 3 (1968): 169–73. doi:10.1111/j.2042-7158.1968.tb09718.x.
  • Hakan Ozer, Münevver Sökmen, Medine Güllüce, Ahmet Adigüzel, Fikrettin Sahin, Atalay Sökmen, Hamdullah Kiliç, and Ozlem Baris, “Chemical Composition and Antimicrobial and Antioxidant Activities of the Essential Oil and Methanol Extract of Hippomarathrum Microcarpum (Bieb.) from Turkey,” Journal of Agricultural and Food Chemistry 55, no. 3 (2007): 937–42. doi:10.1021/jf0624244.
  • A. A. P. Almeida, A. Farah, D. A. Silva, E. A. Nunan, and M. B. A. Glória, “Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria,” Journal of Agricultural and Food Chemistry 54, no. 23 (2006): 8738–43. doi:10.1021/jf0617317.
  • M. Arumugam, A. Mitra, P. Jaisankar, S. Dasgupta, T. Sen, R. Gachhui, U. K. Mukhopadhyay, and J. Mukherjee, “Isolation of an Unusual Metabolite 2-Allyloxyphenol from a Marine Actinobacterium, Its Biological Activities and Applications,” Applied Microbiology and Biotechnology 86, no. 1 (2010): 109–17. doi:10.1007/s00253-009-2311-2.
  • S. Sakat, A. R. Juvekar, and M. N. Gambhire, “In Vitro Antioxidant and Anti-inflammatory Activity of Methanol Extract of Oxalis Corniculata Linn,” International Journal of Pharmacy and Pharmaceutical Sciences 2, no. 1 (2010): 146–55.
  • L. B. Reller, M. Weinstein, J. H. Jorgensen, and M. J. Ferraro, “Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices,” Clinical Infectious Diseases49, no. 11 (2009): 1749–55. doi:10.1086/647952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.