221
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Molecular Docking Study, and ADMET Properties of New Antimicrobial Quinazolinone and Fused Quinazoline Derivatives

, , &
Pages 3051-3071 | Received 10 Jan 2022, Accepted 27 Mar 2022, Published online: 06 Apr 2022

References

  • D. S. A. Haneen, R. S. Gouhar, H. E. Hashem, and A. S. A. Youssef, “Synthesis and Reactions of 4 H -3,1-Benzoxazin-4-One Derivative Bearing Pyrazolyl Moiety as Antimicrobial and Antioxidant Agents,” Synthetic Communications 49 (2019): 1–16. doi:10.1080/00397911.2019.1646288.
  • T. Gupta, A. Rohilla, A. Pathak, M. J. Akhtar, M. R. Haider, and M. S. Yar, “Current Perspectives on Quinazolines with Potent Biological Activities: A Review,” Synthetic Communications 48, no. 10 (2018): 1099–127. doi:10.1080/00397911.2018.1431282.
  • S. Y. Abbas, K. A. M. El-Bayouki, W. M. Basyouni, and E. A. Mostafa, “New Series of 4(3H)-Quinazolinone Derivatives: Syntheses and Evaluation of Antitumor and Antiviral Activities,” Medicinal Chemistry Research 27, no. 2 (2018): 571–82. doi:10.1007/s00044-017-2083-7.
  • A. A. M. Abdel-Aziz, L. A. Abou-Zeid, K. E. H. Eltahir, R. R. Ayyad, M. A. A. El-Sayed, and A. S. El-Azab, “Synthesis, anti-Inflammatory, Analgesic, COX-1/2 Inhibitory Activities and Molecular Docking Studies of Substituted 2-Mercapto-4(3 H)-Quinazolinones,” European Journal of Medicinal Chemistry 121 (2016): 410–21. doi:10.1016/j.ejmech.2016.05.066.
  • V. Alagarsamy, K. Chitra, G. Saravanan, V. R. Solomon, M. T. Sulthana, and B. Narendhar, “An Overview of Quinazolines: Pharmacological Significance and Recent Developments,” European Journal of Medicinal Chemistry 151 (2018): 628–85. doi:10.1016/j.ejmech.2018.03.076.
  • V. Alagarsamy, and U. S. Pathak, “Synthesis and Antihypertensive Activity of Novel 3-Benzyl-2-Substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-Ones,” Bioorganic & Medicinal Chemistry 15, no. 10 (2007): 3457–62. doi:10.1016/j.bmc.2007.03.007.
  • A. Jabar, Kh. Atia, and S. S. Al-Mufrgeiy, “Synyhesis and Antibacterial Activities of New 3-Amino-2-Methyl-Quinazolin-4 (3h)-One Derivatives,” American Journal of Chemistry 2, no. 3 (2012): 150–6. doi:10.5923/j.chemistry.20120203.09.
  • M. Mishra, V. K. Mishra, P. Senger, A. K. Pathak, and S. K. Kashaw, “Exploring QSAR Studies on 4-Substituted Quinazoline Derivatives as Antimalarial Compounds for the Development of Predictive Models,” Medicinal Chemistry Research 23, no. 3 (2014): 1397–405. doi:10.1007/s00044-013-0744-8.
  • A. Aboelmagd, E. M. S. Salem, I. A. I. Ali, and M. S. Gomaa, “Synthesis of Quinazolindionyl Amino Acid and Dipeptide Derivatives as Possible Antitumour Agents,” Arkivoc 2019, no. 6 (2019): 27–35. doi:10.24820/ark.5550190.p010.926.
  • M. C. Tseng, H. Y. Yang, and Y. H. Chu, “Total Synthesis of Asperlicin C, Circumdatin F, Demethylbenzomalvin A, Demethoxycircumdatin H, Sclerotigenin, and Other Fused Quinazolinones,” Organic & Biomolecular Chemistry 8, no. 2 (2010): 419–27. doi:10.1039/b910545j.
  • A. S. A. Youssef, M. M. Hemdan, F. A. El-Mariah, and H. E. Hashem, “Synthesis of Some Quinazolinone Derivatives Functionalized with N-3 Heterocyclic Side Chain,” Journal of Heterocyclic Chemistry 55, no. 7 (2018): 1626–33. doi:10.1002/jhet.3197.
  • M. H. Hekal, F. S. M. Abu El-Azm, and S. R. Atta-Allah, “Ecofriendly and Highly Efficient Microwave-Induced Synthesis of Novel Quinazolinone-Undecyl Hybrids with in Vitro Antitumor Activity,” Synthetic Communications. 49, no. 20 (2019): 2630–41. doi:10.1080/00397911.2019.1637001.
  • M. A. E.-A. El-Hashash, M. E. Azab, R. A. E.-A. Faty, and A. E.-G. E. Amr, “Synthesis, Antimicrobial and anti-Inflammatory Activity of Some New Benzoxazinone and Quinazolinone Candidates,” Chemical & Pharmaceutical Bulletin 64, no. 3 (2016): 263–71. doi:10.1248/cpb.c15-00904.
  • S. Lakshmanan, D. Govindaraj, N. Ramalakshmi, and S. A. Antony, “Synthesis, Molecular Docking, DFT Calculations and Cytotoxicity Activity of Benzo[g]Quinazoline Derivatives in Choline Chloride-Urea,” Journal of Molecular Structure 1150 (2017): 88–95. doi:10.1016/j.molstruc.2017.08.082.
  • M. El-Saadi, N. Amin, S. Zaki, and H. Abdelrahman, “Abdel-Rahman, Synthesis, Docking and Biological Evaluation of 2,4-Disubstituted Quinazolines with Multi-Target Activities as anti-Cancer and Antimicrobial Agents,” Egyptian Journal of Chemistry 0, no. 0 (2020): 0–3734. doi:10.21608/ejchem.2020.23300.2385.
  • W. Pao, and V. A. Miller, “Epidermal Growth Factor Receptor Mutations, Small-Molecule Kinase Inhibitors, and Non-Small-Cell Lung Cancer: Current Knowledge and Future Directions,” Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 23, no. 11 (2005): 2556–68. doi:10.1200/JCO.2005.07.799.
  • C. M. Dixon, J. W. Kusek, D. Ph, H. Lepor, K. T. Mcvary, L. M. Nyberg, D. Ph, H. S. Clarke, D. Ph, E. D. Crawford, A. Diokno, J. P. Foley, H. E. Foster, S. C. Jacobs, S. A. Kaplan, K. J. Kreder, M. M. Lieber, M. S. Lucia, G. J. Miller, D. Ph, M. Menon, D. F. Milam, J. W. Ramsdell, N. S. Schenkman, K. M. Slawin, “The Long-Term Effect of Doxazosin, Finasteride, and Combination Therapy on the Clinical Progression of Benign Prostatic Hyperplasia,” N. Engl. J. Med. 349 (2003) 2387–2398
  • Z. A. Khan, S. A. R. Naqvi, S. A. Shahzad, N. Mahmood, M. Yar, and A. F. Zahoor, “Synthesis and Antimicrobial Activity of 2-Aryl-4H-3,1-Benzoxazin-4-Ones,” Asian Journal of Chemistry 25, no. 1 (2013): 152–6. doi:10.14233/ajchem.2013.12846.
  • A. El-Mekabaty, “Chemistry of 4 H -3, 1-Benzoxazin-4-Ones,” Int. J. Mod. Org. Chem 2 (2013): 81–121.
  • M. Shariat, and S. Abdollahi, “Synthesis of Benzoxazinone Derivatives: A New Route to 2 (N phthaloylmethyl)-4H-3,1-benzoxazin-4-one,” Molecules (Basel, Switzerland) 9, no. 8 (2004): 705–12. doi:10.3390/90800705.
  • S. A. Rizk, “Utility of Azalactones in Synthesis of Some New Heterocyclic Compounds,” International Journal of Chemistry and Material Sciences 1 (2013): 189–94. http://academeresearchjournals.org/journal/ijcms.
  • M. A. El-Hashash, and S. A. Rizk, “Behaviour of 4-(4-Acetylaminophenyl)-4-Oxobut-2-Enoic Acid towards Nucleophiles and Synthesis of Various N-Heterocycles,” European Chemical Bulletin 2 (2013): 456–60.
  • El-Sayed I. El-Desoky, Eman M. Keshk, Aya A. El-Sawi, Mohamed A. Abozeid, Laila A. Abouzeid, and Abdel-Rahman H. Abdel-Rahman, “Abdel-Rahman, Synthesis, Biological Evaluation and in Silico Molecular Docking of Novel 1-Hydroxy-Naphthyl Substituted Heterocycles,” Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society 26, no. 6 (2018): 852–9. doi:10.1016/j.jsps.2018.03.013.
  • M. M. Hemdan, A. S. A. Youssef, F. A. El-Mariah, and H. E. Hashem, “Synthesis and Antimicrobial Assessments of Some Quinazolines and Their Annulated Systems,” Journal of Chemical Research 41 (2017): 106-111. doi:10.3184/174751917X14858862342269.
  • E. Mavridis, E. Bermperoglou, E. Pontiki, and D. Hadjipavlou-Litina, “Their Benzamides as Potential Bioactive Small Molecules,” Molecules 25, no. 14 (2020): 3173. doi:10.3390/molecules25143173.
  • B. Sha, L. Hadian, and A. R. Khosropour, “RSC Advances an Innovation for Development of Erlenmeyer Plochl Reaction and Synthesis of at-130 Analogous: A New Application of Continuous- Flow Method†,” RSC Advances 6, no. 24 (2016): 19861–6. doi:10.1039/C6RA00301J.
  • H. E. Hashem, and A. M. Abo-Bakr, “Synthesis of Some New 1,2,4-Triazine and 1,2,5-Oxadiazine Derivatives with Antimicrobial Activity,” Heteroatom Chemistry 2019 (2019): 1–7. 10.1155/2019/2326514.
  • H. E. Hashem, A. E.-G. E. Amr, E. S. Nossier, E. A. Elsayed, and E. M. Azmy, “Synthesis, Antimicrobial Activity and Molecular Docking of Novel Thiourea Derivatives Tagged with Thiadiazole, Imidazole and Triazine Moieties as Potential DNA Gyrase and Topoisomerase IV Inhibitors,” Molecules 25, no. 12 (2020): 2766. doi:10.3390/molecules25122766.
  • I. M. M. Othman, M. A. M. Gad-Elkareem, M. El-Naggar, E. S. Nossier, and A. E. G. E. Amr, “Novel Phthalimide Based Analogues: design, Synthesis, Biological Evaluation, and Molecular Docking Studies,” Journal of Enzyme Inhibition and Medicinal Chemistry 34, no. 1 (2019): 1259–70. doi:10.1080/14756366.2019.1637861.
  • M. A. El-Hashash, A. M. El-Metwally, A. M. F. Eissa, and A. M. F. El-Gohary, “Synthesis and Biological Evaluation of Some New 4(3H)-Quinazolinone Derivatives as Non-Classical Antifolate,” Egyptian Journal of Chemistry 53 (2010): 777–90.
  • R. R. Nasab, F. Hassanzadeh, G. A. Khodarahmi, M. Mirzaei, M. Rostami, and A. J. N. Abadi, “Synthesis, Characterization, Cytotoxic Screening, and Density Functional Theory Studies of New Derivatives of Quinazolin-4(3H)-One Schiff Bases,” Research in Pharmaceutical Sciences 12, no. 6 (2017): 444–55. doi:10.4103/1735-5362.217425.
  • M. Sarkar, A. Nath, A. Kumer, C. Mallik, F. Akter, Md Moniruzzaman, and Md A. Ali, “Synthesis, Molecular Docking Screening, ADMET and Dynamics Studies of Synthesized 4-(4-Methoxyphenyl)-8-Methyl-3,4,5,6,7,8-Hexahydroquinazolin-2(1H)-One and Quinazolinone Derivatives,” Journal of Molecular Structure 1244 (2021): 130953. doi:10.1016/j.molstruc.2021.130953.
  • A. A. El-Sayed, M. F. Ismail, A. E. E. Amr, and A. M. Naglah, “Synthesis, Antiproliferative, and Antioxidant Evaluation of 2-Pentylquinazolin-4(3H)-One(Thione) Derivatives with DFT Study,” Molecules 24, no. 20 (2019): 3787–19. doi:10.3390/molecules24203787.
  • S. Tian, J. Wang, Y. Li, D. Li, L. Xu, and T. Hou, “The Application of in Silico Drug-Likeness Predictions in Pharmaceutical Research,” Advanced Drug Delivery Reviews 86 (2015): 2–10. doi:10.1016/j.addr.2015.01.009.
  • A. Nath, A. Kumer, F. Zaben, and W. Khan, “Investigating the Binding Affinity, Molecular Dynamics, and ADMET Properties of 2, 3-Dihydrobenzofuran Derivatives as an Inhibitor of Fungi, Bacteria, and Virus Protein, Beni-Suef Univ,” Journal of Basic and Applied Scientific Research 10 (2021): 1–13. doi:10.1186/s43088-021-00117-8.
  • A. Kumar, S. Divya, S. Bijoy, and K. Roy, “Structural Interactions of Curcumin Biotransformed Molecules with the N-Terminal Residues of Cytotoxic-Associated Gene a Protein Provide Insights into Suppression of Oncogenic Activities,” Interdisciplinary Sciences, Computational Life Sciences 9, no. 1 (2017): 116–29. doi:10.1007/s12539-016-0142-2.
  • A. K. Srivastava, Mallika. Tewari, Hari S. Shukla, and Bijoy K. Roy, “In Silico Profiling of the Potentiality of Curcumin and Conventional Drugs for CagA Oncoprotein Inactivation,” Archiv Der Pharmazie 348, no. 8 (2015): 548–55. doi:10.1002/ardp.201400438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.