225
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural and Computational Studies of Cobalt(II) and Copper(II) Complexes with Aromatic Heterocyclic Ligand

& ORCID Icon
Pages 3024-3050 | Received 18 Jan 2022, Accepted 25 Mar 2022, Published online: 13 Apr 2022

References

  • V. Amani, N. Safari, H. R. Khavasi, and P. Mirzaei, “Iron(III) Mixed-Ligand Complexes: Synthesis, Characterization and Crystal Structure Determination of Iron(III) Hetero-Ligand Complexes Containing 1,10-Phenanthroline, 2,2′-Bipyridine, Chloride and Dimethyl Sulfoxide, [Fe(Phen)Cl3(DMSO)] and [Fe(Bipy)Cl3(DMSO)],” Polyhedron 26, no. 17 (2007): 4908–14. doi:10.1016/j.poly.2007.06.038.
  • S. K. Ahmed, and S. Khaled, “Syntheses, Spectral Characterization, Thermal Properties and DNA Cleavage Studies of a Series of Co(II), Ni(II) and Cu(II) Polypyridine Complexes with Some New Imidazole Derivatives of 1,10-Phenanthroline,” Arabian Journal of Chemistry 12, no. 8 (2019): 2608–17. doi:10.1016/j.arabjc.2015.04.025.
  • H. Gopinathan, and M. N. Arumugham, “Larvicidal Activity of Synthesized Copper(II) Complexes against Culex Quinquefasciatus and Anopheles Subpictus,” Journal of Taibah University for Science 9, no. 1 (2015): 27–33. doi:10.1016/j.jtusci.2014.04.008.
  • Z. Molphy, C. Slator, C. Chatgilialoglu, and A. Kellett, “DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases,” Frontiers in Chemistry 3 (2015): 28. doi:10.3389/fchem.2015.00028.
  • C. Rajarajeswari, M. Ganeshpandian, M. Palaniandavar, A. Riyasdeen, and M. A. Akbarsh, “Mixed Ligand Copper(II) Complexes of 1,10-Phenanthroline with Tridentate Phenolate/Pyridyl/(benz)imidazolyl Schiff Base Ligands: Covalent vs Non-covalent DNA Binding, DNA Cleavage and Cytotoxicity,” Journal of Inorganic Biochemistry 140 (2014): 255–68. doi:10.1016/j.jinorgbio.2014.07.016.
  • A. Bencini, and Vito. Lippolis, “1,10-Phenanthroline: A Versatile Building Block for the Construction of Ligands for Various Purposes,” Coordination Chemistry Reviews. 254, no. 17–18 (2010): 2096–180. doi:10.1016/j.ccr.2010.04.008.
  • P. Nunes, I. Correia, F. Marques, A. P. Matos, M. M. C. dos Santos, C. G. Azevedo, J. Capelo, H. M. Santos, S. Gama, T. Pinheiro, et al, “Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity,” Inorganic Chemistry 59, no. 13 (2020): 9116–34. doi:10.1021/acs.inorgchem.0c00925.
  • A. Mishra, N. K. Kaushik, A. K. Verma, and R. Gupta, “Synthesis, Characterization and Antibacterial Activity of Cobalt(III) Complexes with Pyridine-Amide Ligands,” European Journal of Medicinal Chemistry 43, no. 10 (2008): 2189–96. doi:10.1016/j.ejmech.2007.08.015.
  • I. B. Amali, M. P. Kesavan, V. Vijayakumar, N. I. Gandhi, J. Rajesh, and G. Rajagopal, “Structural Analysis, Antimicrobial and Cytotoxic Studies on New Metal(II) Complexes Containing N2O2 Donor Schiff Base Ligand,” Journal of Molecular Structure. 1183 (2019): 342–50. doi:10.1016/j.molstruc.2019.02.005.
  • M. Kobayashi, and S. Shimizu, “Cobalt Proteins,” European Journal of Biochemistry 261, no. 1 (1999): 1–9. doi:10.1046/j.1432-1327.1999.00186.x.
  • A. A. Shamma, H. A. Ali, and S. Kamel, Applied Organometallic Chemistry. (2017). doi:10.1002/90c.3904.
  • D. Vogt, in: B. Cornils, W.A. Herrmann (Eds.), Applied Homogeneous Catalysis with Organometallic Compounds, vol. 1 (VCH, Weinheim, Germany, 2002). 240.
  • Tomoya Hirohama, Yuko Kuranuki, Eriko Ebina, Takashi Sugizaki, Hidekazu Arii, Makoto Chikira, Pitchumony Tamil Selvi, and Mallayan Palaniandavar, “Copper(II) Complexes of 1,10-Phenanthroline-Derived Ligands: studies on DNA Binding Properties and Nuclease Activity,” Journal of Inorganic Biochemistry 99, no. 5 (2005): 1205–19. doi:10.1016/j.jinorgbio.2005.02.020.
  • Suyun Jie, Shu Zhang, Katrin Wedeking, Wen Zhang, Hongwei Ma, Xiaoming Lu, Yuan Deng, and Wen-Hua Sun, “Cobalt(II) Complexes Bearing 2-Imino-1,10-Phenanthroline Ligands: synthesis, Characterization and Ethylene Oligomerization,” Comptes Rendus Chimie 9, no. 11–12 (2006): 1500–9. doi:10.1016/j.crci.2006.09.007.
  • Tariq A. Altalhi, Khaled Alswat, Walaa F. Alsanie, Mohamed M. Ibrahim, Ali Aldalbahi, and Hamdy S. El-Sheshtawy, “Chloroquine and Hydroxychloroquine Inhibitors for COVID-19 Sialic Acid Cellular Receptor: Structure, Hirshfeld Atomic Charge Analysis and Solvent Effect,” Journal of Molecular Structure 1228 (2021): 129459. doi:10.1016/j.molstruc.2020.129459.
  • J. J. Kozak, H. B. Gray, and R. A. Garza-Lopez, “Structural Stability of the SARS-CoV-2 Main Protease: Can Metal Ions Affect Function?,” Journal of Inorganic Biochemistry 211 (2020): 111179. doi:10.1016/j.jinorgbio.2020.111179.
  • P. Sang, S. H. Tian, Z. H. Meng, and L. Q. Yang, “Anti-HIV Drug Repurposing against SARS-CoV-2,” RSC Advances 10, no. 27 (2020): 15775–83. doi:10.1039/D0RA01899F.
  • Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, and Rolf Hilgenfeld, “Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors,” Science (New York, N.Y.) 368, no. 6489 (2020): 409–12. doi:10.1126/science.abb3405.
  • Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, et al, “Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors,” Nature 582, no. 7811 (2020): 289–93., doi:10.1038/s41586-020-2223-y.
  • J. Zheng, “SARS-CoV-2: An Emerging Coronavirus That Causes a Global Threat,” International Journal of Biological Sciences 16, no. 10 (2020): 1678–85. doi:10.7150/ijbs.45053.
  • M. Pal, D. Musib, A. J. Zade, N. Chowdhury, and M. Roy, “Computational Studies of Selected Transition Metal Complexes as Potential Drug Candidates Against the SARS-CoV-2 Virus,” ChemistrySelect 6, no. 29 (2021): 7429–35. doi:10.1002/slct.202101852.
  • Pradip Debnath, Samhita Bhaumik, Debanjan Sen, Ravi K. Muttineni, and Sudhan Debnath, “Identification of SARS-CoV-2 Main Protease Inhibitors Using Structure Based Virtual Screening and Molecular Dynamics Simulation of DrugBank Database,” ChemistrySelect 6, no. 20 (2021): 4991–5013. doi:10.1002/slct.202100854.
  • Srividya Swaminathan, Jebiti Haribabu, Naveen Kumar Kalagatur, Ramaiah Konakanchi, Nithya Balakrishnan, Nattamai Bhuvanesh, and Ramasamy Karvembu, “Synthesis and Anticancer Activity of [RuCl2(η6-Arene)(Aroylthiourea)] Complexes-High Activity against the Human Neuroblastoma (IMR-32) Cancer Cell Line,” ACS Omega 4, no. 4 (2019): 6245–56. doi:10.1021/acsomega.9b00349.
  • Andri Andreou, Sofia Trantza, Demetrios Filippou, Nikolaos Sipsas, and Sotirios Tsiodras, “COVID-19: The Potential Role of Copper and N-Acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments against SARS-CoV-2,” In Vivo (Athens, Greece) 34, no. 3 Suppl (2020): 1567–88. doi:10.21873/invivo.11946.
  • S. Raha, R. Mallick, S. Basak, and A. K. Duttaroy, “Is Copper Beneficial for COVID-19 Patients?,” Medical Hypotheses 142 (2020): 109814. doi:10.1016/j.mehy.2020.109814.
  • A. A. Cartos, and J. M. Jiniga, Diagn. Microb. Infe. Disease 98, no. 4 (2020): 115176. doi:10.1016/j.diagmicrobio.2020.115176.
  • B. Mohan, S. Muhammad, A. G. Al-Sehemi, S. Bharti, S. Kumar, and M. Choudhary, “Synthesis of Copper(II) Coordination Complex, Its Molecular Docking and Computational Exploration for Novel Functional Properties: A Dual Approach,” ChemistrySelect 6, no. 4 (2021): 738–45. doi:10.1002/slct.202003738.
  • B. Mohan, and M. Choudhary, “Synthesis, Crystal Structure, Computational Study and Anti-Virus Effect of Mixed Ligand Copper (II) Complex with ONS Donor Schiff Base and 1, 10-Phenanthroline ,” Journal of Molecular Structure 1246 (2021): 131246. doi:10.1016/j.molstruc.2021.131246.
  • J. Robinson, A. Arjunan, A. Baroutaji, M. Marti, A. T. Molina, A. S. Aroca, and A. Pollard, “Additive Manufacturing of Anti-SARS-CoV-2 Copper-Tungsten-Silver Alloy,” Rapid Prototyping Journal 27, no. 10 (2021): 1831–49. doi:10.1108/RPJ-06-2021-0131.
  • A. Kotain, V. Kamat, K. Naik, D. G. Kokare, K. Kumara, K. L. Nemtur, V. Kumbar, K. Bhat, and V. K. Revankar, “8-Hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones: Crystal structures, spectral characterization and in vitro cytotoxic studies of their Co(II), Ni(II) & Cu(II) complexes,” Bioorganic Chemistry. 112 (2021): 104962.
  • D. Bradley, “Nanotech for Improved Wound Healing,” Materials Today 40 (2020): 3–7021. doi:10.1016/j.mattod.2020.09.015.
  • A. Ali, N. Sepay, M. Afzal, N. Ayim Sepay, A. Alarifi, M. Shahid, and M. Ahmad, “Molecular Designing, Crystal Structure Determination and in Silico Screening of Copper(II) Complexes Bearing 8-Hydroxyquinoline Derivatives as anti-COVID-19,” Bioorganic Chemistry 110 (2021): 104772. doi:10.1016/j.bioorg.2021.104772.
  • R. A. Garza-Lopez, J. J. Kozak, and H. B. Gray, ChemRxiv. (2020). doi:10.26434/chemrxiv.12673436.
  • (a) S. Armakovic, S. J. Armakovic, J. P. Setrajcic, and V. Holodkov, “Aromaticity, Response, and Nonlinear Optical Properties of Sumanene Modified with Boron and Nitrogen Atoms,” Journal of Molecular Modeling 20, no. 12 (2014): 2538. doi:10.1007/s00894-014-2538-4. (b) V. V. Menon, E. Fazal, Y. S. Mary, C. Y. Panicker, S. Armakovi, S. J. Armakovi, S. Nagarajan, and C. V. Alsenoy, “FT-IR, FT-Raman and NMR Characterization of 2-Isopropyl-5-Methylcyclohexyl Quinoline-2-Carboxylate and Investigation of Its Reactive and Optoelectronic Properties by Molecular Dynamics Simulations and DFT Calculations,” Journal of Molecular Structure. 1127 (2017): 124–37. doi:10.1016/j.molstruc.2016.07.096. (c) S. Armakovic, S. J. Armakovic, J. P. Setrajcic, and I. J. Setrajcic, “ Optical and bowl-to-bowl inversion properties of sumanene substituted on its benzylic positions; a DFT/TD-DFT study,” Chemical Physics Letters. 578 (2013): 156–61.
  • (a) M. K. Shanmugaiah, K. M. Palsamy, R. Lokesh, I. N. Gandhi, L. Mitu, R. Jegathalaprathaban, and R. Gurusamy, “Ternary Copper (II) Complex Based Chemical Probes for DNA Targeting: Cytotoxic Activity under Visible Light,” Applied Organometallic Chemistry 33, no. 3 (2019): e4762. doi:10.1002/aoc.4762. (b) C. V. Rani, M. P. Kesavan, S. Haseena, R. Varatharaj, J. Rajesh, and G. Rajagopal, “Bidentate Schiff Base Ligands Appended Metal(II) Complexes as Probes of DNA and Plasma Protein: In Silico Molecular Modelling Studies,” Applied Biochemistry and Biotechnology 191, no. 4 (2020): 1515–32. doi:10.1007/s12010-020-03270-5.
  • G. M. Sheldrick, “Crystal Structure Refinement with SHELXL,” Acta Crystallogr C Struct Chem 71, no. Pt 1 (2015): 3–8. doi:10.1107/S2053229614024218.
  • L. J. Farrugia, “WinGX and ORTEP for Windows: An Update,” Journal of Applied Crystallography 45, no. 4 (2012): 849–54. doi:10.1107/S0021889812029111.
  • A. L. Spek, “Single-Crystal Structure Validation with the Program PLATON,” Journal of Applied Crystallography 36, no. 1 (2003): 7–13. doi:10.1107/S0021889802022112.
  • C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van de Streek, “Mercury: visualization and Analysis of Crystal Structures,” Journal of Applied Crystallography 39, no. 3 (2006): 453–7. doi:10.1107/S002188980600731X.
  • K. Brandenburg, Diamond Version 3.2k (Bonn, Germany: Crystal Impact GbR, 2014). http://www.crystalimpact.com/diamond.
  • M. J. Turner, J. J. Mckinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayati- Laka, and M. A. Spackman, Crystal Explorer, 17, The University of Western Australia, 2017. https://hirshfeldsurface.net
  • F. L. Hirshfeld, “Bonded-Atom Fragments for Describing Molecular Charge Densities,” Theoretica Chimica Acta 44, no. 2 (1977): 129–38. doi:10.1007/BF00549096.
  • S. Kumar, and M. Choudhary, New Journal of Chemistry. (2022). doi:10.1039/d2nj00283c.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson, Gaussian 16 Rev. A.03. (Wallingford, CT: Gaussian, Inc., 2016).
  • H. Lambert, N. Mohan, and T. C. Lee, “Ultrahigh Binding Affinity of a Hydrocarbon Guest inside Cucurbit[7]Uril Enhanced by Strong Host-Guest Charge Matching,” Physical Chemistry Chemical Physics : PCCP 21, no. 27 (2019): 14521–9. doi:10.1039/c9cp01762c.
  • J. D. Chai, and M. H. Gordon, “Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections,” Physical Chemistry Chemical Physics: PCCP 10, no. 44 (2008): 6615–20. doi:10.1039/b810189b.
  • (a) M. M. Matin, M. Uzzaman, S. A. Chowdhury, and M. M. H. Bhuiyan, “In vitro antimicrobial, physiochemical, pharmacokinetics and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease,” Journal of Biomolecular Structure and Dynamics. (2020). doi:10.1080/07391102.2020.1850358. (b) C. Shivanika, S. D. Kumar, V. Ragunathan, P. Tiwari, and A. Sunitha, “Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease,” Journal of Biomolecular Structure and Dynamics. (2020). doi:10.1080/07391102.2020.1815584.
  • A. Daina, and Vincent. Zoete, “A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules,” ChemMedChem 11, no. 11 (2016): 1117–21. doi:10.1002/cmdc.201600182.
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7 (2017): 42717. doi:10.1038/srep42717.
  • G. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91. doi:10.1002/jcc.21256.
  • O. Trott, and A. J. Olson, “AutoDock Vina: improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61. doi:10.1002/jcc.21334.
  • D. S. Biovia, Discovery Studio Visualizer, v17.2.0.16349 (San Diego: Dassault Systems). 2016.
  • Xuelan Zhou, Fanglin Zhong, Cheng Lin, Xiaohui Hu, Yan Zhang, Bing Xiong, Xiushan Yin, Jinheng Fu, Wei He, Jingjing Duan, et al, “Structure of SARS-CoV-2 Main Protease in the Apo State,” Science China. Life Sciences 64, no. 4 (2021): 656–9. doi:10.1007/s11427-020-1791-3.
  • M. L. Hu, J. X. Yuan, H. P. Xiao, and F. Chen, “Poly[diaquacobalt(II)-di-µ4-benzene-1,2,4-tricarboxylato-bis[1,10-phenan-throlinecobalt(II)]],” Acta Crystallogr C60 (2004): m235.
  • M. H. Huang, L. H. Bi, and S. J. Dong, “mer-(4-Aminobenzenesulfonato-ĸN)triaqua(1,10-phenanthroline-ĸ2N,N’)cobalt(II) chloride,” Acta Crystallogr C60 (2004): m30.
  • M. L. Hu, J. X. Yuan, H. P. Xiao, and J. X. Yuan, “Polymeric aqua (µ4-dihydrogen benzene-1,2,4,5-tetracarboxylato)(1,10-phenanthroline)cobalt(II),” Acta Crystallogr C60 (2004): m112.
  • S. Gao, l H. Huo, C. S. Gu, J. W. Liu, and J. G. Zhao, “catena-Poly[aqua(1,10-phenanthroline-ĸ2N,N’)-cobalt(II)]-µ-4-carboxyphenoxyacetato-ĸ3 O,O’:O],” Acta Crystallogr E61 (2005): m496.
  • Q. Miao, M. L. Hu, and F. Chen, “µ-Aqua-bis(µ-2’-carboxybiphenyl-2-carboxyl-ato-ĸ2O:O’)bis[bis(2’-carboxybiphenyl-2-carboxylato-ĸO)(1-10-phenanthroline-ĸ2 N,N’)-cobalt(II)],” Acta Crystallogr E60 (2004): m1314.
  • Y. Liu, D. J. Xu, and C. H. Hung, “Tris(phenanthroline-ĸ2 N,N’)cobalt(II)fumarate fumaric acid tetrahydrate,” Acta Crystallogr E60 (2003): m297.
  • A. Bulut, H. Icbudak, O. Z. Yesilel, H. Olmez, and O. B¨UÿUkg¨Ung¨Or, “Diaqua bis(1,10- phenanthroline)cobalt(II) diorotate 2.25-hydrate,” Acta Crystallogr E59 (2003): m736.
  • J. W. Liu, S. Gao, L. H. Huo, and S. W. Ng, “Aquachlorobis(1,10- phenanthroline)-cobalt(II)chloride dimethylformamide solvate,” Acta Crystallogr E60 (2004): m501.
  • (a) J. M. Seco, M. J. G. Garmendia, and M. Quiros, “Synthesis and Characterization of Tris(2,2′-Bipyridine) and Tris(1,10-Phenanthroline) Copper(II) Hexafluorophosphate. Crystal Structure of the Phenanthroline Complex,” Journal of Coordination Chemistry. 55, no. 3 (2002): 345–51. doi:10.1080/00958970211891. (b) C. Jubert, A. Mohamadou, J. Marrot, and J-Pierre. Barbier, “Structural Effects of Potentially Hexadentate N4O2, N4S2 or N6 Ligands Involving Pyridine, Amine and Ether or Thioether Donors: crystal Structure of Copper(II) and Zinc(II) Complexes †,” Journal of the Chemical Society, Dalton Transactions 8, no. 8 (2001): 1230–8. doi:10.1039/b010074i.
  • (a) N. P. Juraj, M. Krklec, T. Novosel, B. Perić, R. Vianello, S. Raić-Malić, and S. I. Kirin, “Copper(ii) and Zinc(ii) Complexes of Mono- and Bis-1,2,3-Triazole-Substituted Heterocyclic Ligands,” Dalton Transactions (Cambridge, England : 2003) 49, no. 26 (2020): 9002–15. doi:10.1039/d0dt01244k. (b) J. M. Seco, M. J. G. Garmendia, and M. Quiros, “Synthesis and Characterization of Tris(2,2′-Bipyridine) and Tris(1,10-Phenanthroline) Copper(II) Hexafluorophosphate. Crystal Structure of the Phenanthroline Complex,” Journal of Coordination Chemistry. 55, no. 3 (2002): 345–51. doi:10.1080/00958970211891.
  • S. Das, J. Pasan, L. Gayathri, S. Saha, S. Chandraleka, M. Maji, D. Dhanasekaran, M. A. Akbarsha, N. Kole, and B. Biswas, “Recognition of Self-Assembled Water-Nitrate Cluster in a Co(III)-2,2′-Bipyridine Host: Synthesis, X-Ray Structure, DNA Cleavage, Molecular Docking and Anticancer Activity,” Journal of Chemical Sciences 128, no. 11 (2016): 1755–64. doi:10.1007/s12039-016-1167-0.
  • M. Garai, D. Dey, H. R. Yadav, M. Maji, A. R. Choudhury, and B. Biswas, “Synthesis and Phosphatase Activity of a Cobalt(II) Phenanthroline Complex,” Journal of Chemical Sciences 129, no. 10 (2017): 1513–20. doi:10.1007/s12039-017-1355-6.
  • Kseniya G. Vladimirova, Alexandra Ya Freidzon, Oxana V. Kotova, Andrei A. Vaschenko, Leonid S. Lepnev, Alexander A. Bagatur'yants, Alexei G. Vitukhnovskiy, Nickolai F. Stepanov, and Michael V. Alfimov, “Theoretical Study of Structure and Electronic Absorption Spectra of Some Schiff Bases and Their Zinc Complexes,” Inorganic Chemistry 48, no. 23 (2009): 11123–30. doi:10.1021/ic9015004.
  • J. Adhikary, P. Chakraborty, S. Das, T. Chattopadhyay, A. Bauza, S. K. Chattopadhyay, B. Ghosh, F. A. Mautner, A. Frontera, and D. Das, “A Combined Experimental and Theoretical Investigation on the Role of Halide Ligands on the Catecholase-like Activity of Mononuclear Nickel(II) Complexes with a Phenol-Based Tridentate Ligand,” Inorganic Chemistry 52, no. 23 (2013): 13442–52. doi:10.1021/ic401819t.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al, Gaussian 09 Citation. (Wallingford: Gaussian Inc., 2013).
  • M. M. Lawal, T. Govender, G. E. Maguire, H. G. Kruger, and B. Honarparvar, “Idefined chemical concepts: the problem of quantification,” International Journal of Quantum Chemistry. 118 (2017): 25497.
  • Yusuf Sert, S. Sreenivasa, Hatice Doğan, N. R. Mohan, P. A. Suchetan, and Fatih Ucun, “Vibrational Frequency Analysis, FT-IR and Laser-Raman Spectra, DFT Studies on Ethyl (2E)-2-Cyano-3-(4-Methoxyphenyl)-Acrylate,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 130 (2014): 96–104. doi:10.1016/j.saa.2014.03.061.
  • S. Murugavel, V. V. Velan, D. Kannan, and M. Bakthadoss, “Synthesis, Crystal Structure Analysis, Spectral Investigations, DFT Computations, Biological Activities and Molecular Docking of Methyl(2E)-2-{[N-(2-Formylphenyl)(4-Methylbenzene) Sulfonamido]Methyl}-3-(4-Fluorophenyl)Prop-2-Enoate, a Potential Bioactive Agent,” Journal of Molecular Structure. 1108 (2016): 150–67. doi:10.1016/j.molstruc.2015.11.047.
  • P. F. Rapheal, E. Manoj, M. R P. Kurup, and H. Fun, “Nickel(II) Complexes of N(4)-Substituted Thiosemicarbazones Derived from Pyridine-2-Carbaldehyde: Crystal Structures, Spectral Aspects and Hirshfeld Surface Analysis,” Journal of Molecular Structure. 1237 (2021): 130362. doi:10.1016/j.molstruc.2021.130362.
  • M. C. Vineetha, F. Joy, K. P. Murali, T. P. Vinod, S. K. Venkataraman, A. K. Agarwal, Y. Nair, and M. R. P. Kurup, “Novel dioxidomolybdenum complexes containing ONO chelates: Synthesis, physicochemical properties, crystal structures, Hirshfeld surface analysis, DNA binding/cleavage studies, docking, and in vitro cytotoxicity,” Applied Organometallic Chemistry. (2021). doi:10.1002/aoc.6334.
  • L. Latheef, M. R. P. Kurup, and E. Suresh, “Synthesis, Crystallographic Structure and Hirshfeld Surface Analysis of Nickel(II) Chelate Derived from O,N,S-Donor Tridentate Thiosemicarbazone,” Chemical Data Collections 35 (2021): 100758. doi:10.1016/j.cdc.2021.100758.
  • P. V. Ramana, T. Sundius, S. Muthu, K. C. Mouli, Y. R. Krishna, K. V. Prasad, R. N. Devi, A. Irfan, and C. Santhamma, “Spectroscopic, Quantum Mechanical, Electronic Excitation Properties (Ethanol Solvent), DFT Investigations and Molecular Docking Analysis of an anti-Cancer Drug Bendamustine,” Journal of Molecular Structure. 1253 (2022): 132211. doi:10.1016/j.molstruc.2021.132211.
  • S. Boopathi, A. B. Poma, and P. Kolandaivel, “Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral Drug Promises and Rule Out against Its Treatment,” Journal of Biomolecular Structure and Dynamics 39 (2021): 3409–3418. doi:10.1080/07391102.2020.1758788.
  • S. Kumar, and M. Chodhary, “Structural and theoretical investigations, Hirshfeld surface analysis and anti-SARS-CoV-2 of nickel(II) coordination complex,” Journal of Biomolecular Structure and Dynamics. (2021). doi:10.1080/07391102.2021.2006089.
  • S. Tian, S. J. Wang, Y. Li, D. Li, L. Xu, and T. Hou, “The Application of in Silico Drug-Likeness Predictions in Pharmaceutical Research,” Advanced Drug Delivery Reviews 86 (2015): 2–10. doi:10.1016/j.addr.2015.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.