219
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Novel Urea-Functionalized Magnetic Nanoparticles as a Heterogeneous Hydrogen Bonding Catalyst for the Synthesis of New 2-Hydroxy Pyridines

, , &
Pages 3072-3088 | Received 24 Jan 2022, Accepted 27 Mar 2022, Published online: 13 Apr 2022

References

  • S. J. Grabowski, “What is the Covalency of Hydrogen Bonding?,” Chemical Reviews 111, no. 4 (2011): 2597–625. doi:10.1021/cr800346f.
  • A. S. Mahadevi, and G. N. Sastry, “Cooperativity in Noncovalent Interactions,” Chemical Reviews 116, no. 5 (2016): 2775–825. doi:10.1021/cr500344e.
  • A. M. Davis, and S. J. Teague, “Hydrogen Bonding, Hydrophobic Interactions, and Failure of the Rigid Receptor Hypothesis,” Angewandte Chemie International Edition 38, no. 6 (1999): 736–49. doi:10.1002/(SICI)1521-3773(19990315)38:6<736::AID-ANIE736>3.0.CO;2-R.
  • Y. J. Jin, T. Aoki, and G. Kwak, “Control of Intramolecular Hydrogen Bonding in a Conformation-Switchable Helical-Spring Polymer by Solvent and Temperature,” Angewandte Chemie (International ed. in English) 59, no. 5 (2020): 1837–44. doi:10.1002/anie.201910269.
  • S. Sarkar, P. K. Sruthi, N. Ramanathan, and K. Sundararajan, “Strong Proton-Shared Hydrogen Bonding in a Methyl Imidazole⋯HCl Complex: evidence from Matrix Isolation Infrared Spectroscopy and ab Initio Computations,” New Journal of Chemistry 44, no. 17 (2020): 7116–28. doi:10.1039/D0NJ00029A.
  • L. A. Estroff, L. Leiserowitz, L. Addadi, S. Weiner, and A. D. Hamilton, “Characterization of an Organic Hydrogel: A Cryo‐Transmission Electron Microscopy and X‐Ray Diffraction Study,” Advanced Materials 15, no. 1 (2003): 38–42. doi:10.1002/adma.200390004.
  • G. R. Desiraju, and G. W. Parshall, “Crystal Engineering: The Design of Organic Solids,” Materials Science Monographs, 24, no. 54 (1989): 265.
  • C. Pettinari, F. Marchetti, R. Pettinari, A. Drozdov, S. Semenov, S. I. Troyanov, and V. Zolin, “A New Rare-Earth Metal Acylpyrazolonate Containing the Zundel Ion H5O2+ Stabilized by Strong Hydrogen Bonding,” Inorganic Chemistry Communications 9, no. 6 (2006): 634–7. doi:10.1016/j.inoche.2006.03.008.
  • E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Chemical Reviews 114, no. 21 (2014): 11060–82. doi:10.1021/cr300162p.
  • J. Chen, and J. Rebek, “Selectivity in an Encapsulated Cycloaddition Reaction,” Organic Letters 4, no. 3 (2002): 327–9. doi:10.1021/ol0168115.
  • E. Baráth, “Hydrogen Transfer Reactions of Carbonyls, Alkynes, and Alkenes with Noble Metals in the Presence of Alcohols/Ethers and Amines as Hydrogen Donors,” Catalysts 8, no. 12 (2018): 671. doi:10.3390/catal8120671.
  • G. Pupo, F. Ibba, D. M. H. Ascough, A. C. Vicini, P. Ricci, K. E. Christensen, L. Pfeifer, J. R. Morphy, J. M. Brown, R. S. Paton, et al, “Asymmetric Nucleophilic Fluorination under Hydrogen Bonding Phase-Transfer Catalysis,” Science (New York, N.Y.) 360, no. 6389 (2018): 638–42. doi:10.1126/science.aar7941.
  • G. Roagna, D. M. Ascough, F. Ibba, A. C. Vicini, A. Fontana, K. E. Christensen, D. Oehlrich, A. Misale, A. A. Trabanco, R. S. Paton, et al, “Hydrogen Bonding Phase-Transfer Catalysis with Ionic Reactants: Enantioselective Synthesis of γ-Fluoroamines,” Journal of the American Chemical Society 142, no. 33 (2020): 14045–51. doi:10.1021/jacs.0c05131.
  • B. Atashkar, M. A. Zolfigol, and S. Mallakpour, “Applications of Biological Urea-Based Catalysts in Chemical Processes,” Molecular Catalysis 452 (2018): 192–246. doi:10.1016/j.mcat.2018.03.009.
  • X. Yu, and W. Wang, “Hydrogen‐Bond‐Mediated Asymmetric Catalysis,” Chemistry – An Asian Journal 3, no. 3 (2008): 516–32. doi:10.1002/asia.200700415.
  • C. Zhu, H. Tang, K. Yang, X. Wu, Y. Luo, J. Wang, and Y. Li, “A Urea-Containing Metal-Organic Framework as a Multifunctional Heterogeneous Hydrogen Bond-Donating Catalyst,” Catalysis Communications 135 (2020): 105837. doi:10.1016/j.catcom.2019.105837.
  • C. M. McGuirk, M. J. Katz, C. L. Stern, A. A. Sarjeant, J. T. Hupp, O. K. Farha, and C. A. Mirkin, “Turning on Catalysis: incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal-Organic Framework,” Journal of the American Chemical Society 137, no. 2 (2015): 919–25. doi:10.1021/ja511403t.
  • S. Lancianesi, A. Palmieri, and M. Petrini, “Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds,” Chemical Reviews 114, no. 14 (2014): 7108–49. doi:10.1021/cr400676v.
  • M. S. Taylor, N. Tokunaga, and E. N. Jacobsen, “Enantioselective Thiourea‐Catalyzed Acyl‐Mannich Reactions of Isoquinolines,” Angewandte Chemie 117, no. 41 (2005): 6858–62. doi:10.1002/ange.200502277.
  • S. B. Tsogoeva, D. A. Yalalov, M. J. Hateley, C. Weckbecker, and K. Huthmacher, “Asymmetric Organocatalysis with Novel Chiral Thiourea Derivatives: Bifunctional Catalysts for the Strecker and Nitro‐Michael Reactions,” European Journal of Organic Chemistry 2005, no. 23 (2005): 4995–5000. doi:10.1002/ejoc.200500420.
  • A. Wittkopp, and P. R. Schreiner, “Metal‐Free, Noncovalent Catalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water,” Chemistry - A European Journal 9, no. 2 (2003): 407–14. doi:10.1002/chem.200390042.
  • M. Y. Wu, W. W. He, X. Y. Liu, and B. Tan, “Asymmetric Construction of Spirooxindoles by Organocatalytic Multicomponent Reactions Using Diazooxindoles,” Angewandte Chemie (International ed. in English) 54, no. 32 (2015): 9409–13. doi:10.1002/anie.201504640.
  • R. Hudson, Y. Feng, R. S. Varma, and A. Moores, “Bare Magnetic Nanoparticles: sustainable Synthesis and Applications in Catalytic Organic Transformations,” Green Chemistry 16, no. 10 (2014): 4493–505. doi:10.1039/C4GC00418C.
  • L. Wu, A. Mendoza-Garcia, Q. Li, and S. Sun, “Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications,” Chemical Reviews 116, no. 18 (2016): 10473–512. doi:10.1021/acs.chemrev.5b00687.
  • M. Nikpassand, A. Keyhani, L. Z. Fekri, and R. S. Varma, “Mechanochemical Synthesis of Azo-Linked 2-Amino-4H-Chromene Derivatives Using Fe3O4@SiO2@KIT-6-NH2@Schiff-Base Complex Nanoparticles,” Journal of Molecular Structure 1251 (2022): 132065. doi:10.1016/j.molstruc.2021.132065.
  • M. Nikpassand, L. Z. Fekri, R. S. Varma, L. Hassanzadi, and F. S. Pashaki, “Green Synthesis of Novel 5-Amino-Bispyrazole-4-Carbonitriles Using a Recyclable Fe3O4@SiO2@Vanillin@ Thioglycolic Acid Nano-Catalyst,” RSC Advances 12, no. 2 (2022): 834–44. doi:10.1039/D1RA08001F.
  • B. B. Toure, and D. G. Hall, “Natural Product Synthesis Using Multicomponent Reaction Strategies,” Chemical Reviews 109, no. 9 (2009): 4439–86. doi:10.1021/cr800296p.
  • R. C. Cioc, E. Ruijter, and R. V. Orru, “Multicomponent Reactions: advanced Tools for Sustainable Organic Synthesis,” Green Chemistry 16, no. 6 (2014): 2958–75. doi:10.1039/C4GC00013G.
  • M. Nikpassand, L. Z. Fekri, and S. Sanagou, “One-Pot Synthesis of 2-Hydrazonyl-4-Phenylthiazoles via [PDBMDIm] Br-Catalyzed Reaction under Solvent-Free Conditions,” Heterocyclic Communications 22, no. 4 (2016): 243–6. doi:10.1515/hc-2016-0024.
  • D. Wang, and D. Astruc, “Fast-Growing Field of Magnetically Recyclable Nanocatalysts,” Chemical Reviews 114, no. 14 (2014): 6949–85. doi:10.1021/cr500134h.
  • S. Saranya, T. Aneeja, M. Neetha, and G. Anilkumar, “Recent Advances in the Iron‐Catalysed Multicomponent Reactions,” Applied Organometallic Chemistry 34, no. 12 (2020): e5991. doi:10.1002/aoc.5991.
  • C. Allais, J. M. Grassot, J. Rodriguez, and T. Constantieux, “Metal-Free Multicomponent Syntheses of Pyridines,” Chemical Reviews 114, no. 21 (2014): 10829–68. doi:10.1021/cr500099b.
  • J. A. Bull, J. J. Mousseau, G. Pelletier, and A. B. Charette, “Synthesis of Pyridine and Dihydropyridine Derivatives by Regio- and Stereoselective Addition to N-Activated Pyridines,” Chemical Reviews 112, no. 5 (2012): 2642–713. doi:10.1021/cr200251d.
  • G. Yang, and W. Zhang, “Renaissance of Pyridine-Oxazolines as Chiral Ligands for Asymmetric Catalysis,” Chemical Society Reviews 47, no. 5 (2018): 1783–810. doi:10.1039/c7cs00615b.
  • W. W. Tan, Y. J. Ong, and N. Yoshikai, “Synthesis of Highly Substituted Pyridines through Copper‐Catalyzed Condensation of Oximes and α, β‐Unsaturated Imines,” Angewandte Chemie 129, no. 28 (2017): 8352–6. doi:10.1002/ange.201704378.
  • T. Nagata, and Y. Obora, “Transition‐Metal‐Mediated/Catalyzed Synthesis of Pyridines, Pyrimidines, and Triazines by [2 + 2+2] Cycloaddition Reactions,” Asian Journal of Organic Chemistry 9, no. 10 (2020): 1532–47. doi:10.1002/ajoc.202000240.
  • M. Yang, J. Chen, C. He, X. Hu, Y. Ding, Y. Kuang, J. Liu, and Q. Huang, “Palladium-Catalyzed C-4 Selective Coupling of 2,4-Dichloropyridines and Synthesis of Pyridine-Based Dyes for Live-Cell Imaging,” The Journal of Organic Chemistry 85, no. 10 (2020): 6498–508. doi:10.1021/acs.joc.0c00449.
  • A. N. Campbell, and S. S. Stahl, “Overcoming the “oxidant problem”: Strategies to Use O2 as the Oxidant in Organometallic C-H Oxidation Reactions Catalyzed by Pd (and Cu),” Accounts of Chemical Research 45, no. 6 (2012): 851–63. doi:10.1021/ar2002045.
  • K. Şendil, S. Keskin, and M. Balci, “Concise Design and Synthesis of Pyridine-Fused Heterocycles via 6π-Azaelectrocyclization Process of Iminoalkyne Derivatives,” Tetrahedron 75, no. 46 (2019): 130660. doi:10.1016/j.tet.2019.130660.
  • W. Zhang, Y. Chen, W. Chen, Z. Liu, and Z. Li, “Designing Tetrahydroimidazo[1,2-a]Pyridine Derivatives via Catalyst-free Aza-Diels-Alder Reaction (ADAR) and Their Insecticidal Evaluation” Journal of Agricultural and Food Chemistry 58, no. 10 (2010): 6296–9. doi:10.1021/jf100645y.
  • Y. Y. Che, Y. Yue, L. Z. Lin, B. Pei, X. Deng, and C. Feng, “Palladium-Catalyzed Electrophilic Functionalization of Pyridine Derivatives through Phosphonium Salts,” Angewandte Chemie (International ed. in English) 59, no. 38 (2020): 16414–9. doi:10.1002/anie.202006724.
  • E. K. Lui, D. Hergesell, and L. L. Schafer, “N-Silylenamines as Reactive Intermediates: hydroamination for the Modular Synthesis of Selectively Substituted Pyridines,” Organic Letters 20, no. 21 (2018): 6663–7. doi:10.1021/acs.orglett.8b02703.
  • Omar De Paolis, Jonathan Baffoe, Shainaz Landge, and Béla Török, “Multicomponent Domino Cyclization-Oxidative Aromatization on a Bifunctional Pd/C/K-10 Catalyst: An Environmentally Benign Approach toward the Synthesis of Pyridines,” Synthesis 2008, no. 21 (2008): 3423–8. doi:10.1055/s-0028-1083177.
  • Y. Bai, L. Tang, H. Huang, and G. J. Deng, “Synthesis of 2,4-Diarylsubstituted-Pyridines Through a Ru-Catalyzed Four Component Reaction,” Organic & Biomolecular Chemistry 13, no. 15 (2015): 4404–7. doi:10.1039/c5ob00162e.
  • M. Nikpassand, M. Mamaghani, and K. Tabatabaeian, “An Efficient One-Pot Three-Component Synthesis of Fused 1,4-Dihydropyridines Using HY-Zeolite,” Molecules (Basel, Switzerland) 14, no. 4 (2009): 1468–74. doi:10.3390/molecules14041468.
  • (a) J. Li, X. E. Yang, S. L. Wang, L. L. Zhang, X. Z. Zhou, S. Y. Wang, and S. J. Ji, “Visible-Light-Promoted Cross-Coupling Reactions of 4-Alkyl-1, 4-Dihydropyridines with Thiosulfonate or Selenium Sulfonate: A Unified Approach to Sulfides, Selenides, and Sulfoxides,” Organic Letters 22, no. 12 (2020): 4908–4913. (b) X. B. Xu, J. Liu, J. J. Zhang, Y. W. Wang, and, and Y. Peng, “Nickel-Mediated Inter-and Intramolecular C-S Coupling of Thiols and Thioacetates with Aryl Iodides at Room Temperature,” Organic Letters 15, no. 3 (2013)550–553.
  • J. Aziz, S. Messaoudi, M. Alami, and A. Hamze, “Sulfinate Derivatives: dual and Versatile Partners in Organic Synthesis,” Organic & Biomolecular Chemistry 12, no. 48 (2014): 9743–59. doi:10.1039/c4ob01727g.
  • V. Vedovato, E. P. Talbot, and M. C. Willis, “Copper-Catalyzed Synthesis of Activated Sulfonate Esters from Boronic Acids, DABSO, and Pentafluorophenol,” Organic Letters 20, no. 17 (2018): 5493–6. doi:10.1021/acs.orglett.8b02445.
  • A. Vicente‐Blázquez, M. González, R. Álvarez, S. Del Mazo, M. Medarde, and R. Peláez, “Antitubulin Sulfonamides: The Successful Combination of an Established Drug Class and a Multifaceted Target,” Medicinal Research Reviews 39, no. 3 (2019): 775–830. doi:10.1002/med.21541.
  • R. A. Azzam, R. E. Elsayed, and G. H. Elgemeie, “Design, Synthesis, and Antimicrobial Evaluation of a New Series of N-Sulfonamide 2-Pyridones as Dual Inhibitors of DHPS and DHFR Enzymes,” ACS Omega 5, no. 18 (2020): 10401–14. doi:10.1021/acsomega.0c00280.
  • Y. Dong, J. Chen, and H. Xu, “Rhodium(iii)-Catalyzed Sulfonamide Directed Ortho C-H Carbenoid Functionalization Via Metal Carbene Migratory Insertion,” Chemical Communications (Cambridge, England) 55, no. 14 (2019): 2027–30. doi:10.1039/c8cc08837c.
  • R. Wang, X. Zhi, J. Li, and H. Xu, “Synthesis of Novel Oxime Sulfonate Derivatives of 2'(2',6')-(Di)chloropicropodophyllotoxins as Insecticidal Agents,” Journal of Agricultural and Food Chemistry 63, no. 30 (2015): 6668–74. doi:10.1021/acs.jafc.5b02036.
  • Y. Li, H. Cheng, Z. Zhang, X. Zhuang, J. Luo, H. Long, Y. Zhou, Y. Xu, R. Taghipouran, D. Li, et al, “ N-(3-Ethynyl-2,4-Difluorophenyl)Sulfonamide Derivatives as Selective Raf Inhibitors,” ACS Medicinal Chemistry Letters 6, no. 5 (2015): 543–7. doi:10.1021/acsmedchemlett.5b00039.
  • C. Tantardini, E. V. Boldyreva, and E. Benassi, “Hypervalency in Organic Crystals: A Case Study of the Oxicam Sulfonamide Group,” The Journal of Physical Chemistry. A 120, no. 51 (2016): 10289–96. doi:10.1021/acs.jpca.6b10703.
  • N. Boechat, R. C. Carvalho, G. F. Maria de Lourdes, J. P. Coutinho, P. M. Sa, L. N. Seito, E. C. Rosas, A. U. Krettli, M. M. Bastos, and L. C. Pinheiro, “Antimalarial and anti-Inflammatory Activities of New Chloroquine and Primaquine Hybrids: Targeting the Blockade of Malaria Parasite Transmission,” Bioorganic & Medicinal Chemistry 28, no. 24 (2020): 115832. doi:10.1016/j.bmc.2020.115832.
  • Z. Y. Zhou, W. R. Zhao, J. Zhang, X. L. Chen, and J. Y. Tang, “Sodium Tanshinone IIA Sulfonate: A Review of Pharmacological Activity and Pharmacokinetics,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 118 (2019): 109362. doi:10.1016/j.biopha.2019.109362.
  • R. C. Soy, P. K. Kipkemboi, and K. Rop, “Synthesis, Characterization, and Evaluation of Solution Properties of Sesame Fatty Methyl Ester Sulfonate Surfactant,” ACS Omega. 5, no. 44 (2020): 28643–55.
  • Jue Liang, Bedia Begüm Karakoçak, Jessica J. Struckhoff, and Nathan Ravi, “Synthesis and Characterization of Injectable Sulfonate-Containing Hydrogels,” Biomacromolecules 17, no. 12 (2016): 4064–74. doi:10.1021/acs.biomac.6b01368.
  • M. Bouhdada, M. E. Amane, and N. El. Hamzaoui, “Synthesis, Spectroscopic Studies, X-Ray Powder Diffraction Data and Antibacterial Activity of Mixed Transition Metal Complexes with Sulfonate Azo Dye, Sulfamate and Caffeine Ligands,” Inorganic Chemistry Communications 101 (2019): 32–9. doi:10.1016/j.inoche.2019.01.005.
  • M. Torabi, M. Yarie, M. A. Zolfigol, S. Rouhani, S. Azizi, T. O. Olomola, M. Maaza, and T. A. Msagati, “Synthesis of New Pyridines with Sulfonamide Moiety via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism in the Presence of a Novel Quinoline-Based Dendrimer-like Ionic Liquid,” RSC Advances 11, no. 5 (2021): 3143–52. doi:10.1039/D0RA09400E.
  • S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Li, and M. Li, “Magnetite Nanoparticles Prepared by Precipitation from Partially Reduced Ferric Chloride Aqueous Solutions,” Journal of Colloid and Interface Science 215, no. 1 (1999): 190–2. doi:10.1006/jcis.1999.6185.
  • G. H. Du, Z. L. Liu, X. Xia, Q. Chu, and S. M. Zhang, “Characterization and Application of Fe3O4/SiO2 Nanocomposites,” Journal of Sol-Gel Science and Technology 39, no. 3 (2006): 285–91. doi:10.1007/s10971-006-7780-5.
  • X. Lei, A. Jalla, A. A. Shama, J. M. Stafford, and B. Cao, “Chromatography-Free and Eco-Friendly Synthesis of Aryl Tosylates and Mesylates,” Synthesis 47, no. 17 (2015): 2578–85. doi:10.1055/s-0034-1378867.
  • E. J. Kim, H. W. Ryu, M. J. Curtis-Long, J. Han, J. Y. Kim, J. K. Cho, D. Kang, and K. H. Park, “Chemoselective Regulation of TREK2 Channel: Activation by Sulfonate Chalcones and Inhibition by Sulfonamide Chalcones,” Bioorganic & Medicinal Chemistry Letters 20, no. 14 (2010): 4237–9. doi:10.1016/j.bmcl.2010.05.033.
  • V. Alabugin, L. Kuhn, M. G. Medvedev, N. V. Krivoshchapov, V. A. Vil’, I. A. Yaremenko, P. Mehaffy, M. Yarie, A. O. Terent’ev, and M. A. Zolfigol, “Stereoelectronic Power of Oxygen in Control of Chemical Reactivity: The Anomeric Effect is Not Alone,” Chemical Society Reviews 50, no. 18 (2021): 10253–345. doi:10.1039/D1CS00386K.
  • V. Alabugin, L. Kuhn, N. V. Krivoshchapov, P. Mehaffy, and M. G. Medvedev, “Anomeric Effect, Hyperconjugation and Electrostatics: lessons from Complexity in a Classic Stereoelectronic Phenomenon,” Chemical Society Reviews 50, no. 18 (2021): 10212–52. doi:10.1039/d1cs00564b.
  • (a) F. Karimi, M. Yarie, and M. A. Zolfigol, “Synthesis and Characterization of Fe3O4@SiO2@(CH2)3NH(CH2)2O2P(OH)2 and Its Catalytic Application in the Synthesis of Benzo-[h]Quinoline-4-Carboxylic Acids via a Cooperative Anomeric Based Oxidation Mechanism,” Molecular Catalysis 489, no. 7 (2020): 110924110933–3217. (b) F. Karimi, M. Yarie, and M. A. Zolfigol, “Fe3O4@SiO2@(CH2)3-Urea-Thiourea: A Novel Hydrogen-Bonding and Reusable Catalyst for the Construction of Bipyridine-5-Carbonitriles via a Cooperative Vinylogous Anomeric Based Oxidation,” Molecular Catalysis 497 (2020): 111201. (c) P. Ghasemi, M. Yarie, M. A. Zolfigol, A. Taherpour, and M. Torabi, “Ionically Tagged Magnetic Nanoparticles with Urea Linkers: Application for Preparation of 2-Aryl-Quinoline-4-Carboxylic Acids via an Anomeric-Based Oxidation Mechanism,” ACS Omega 5 (2020): 3207. (d) F. Karimi, M. Yarie, and M. A. Zolfigol, “A Convenient Method for Synthesis of Terpyridines via a Cooperative Vinylogous Anomeric Based Oxidation,” RSC Advances 10, no. 43 (2020): 25828–25835. (e) M. Dashteh, M. A. Zolfigol, A. Khazaei, S. Baghery, M. Yarie, S. Makhdoomi, and M. Safaiee, “Synthesis of Cobalt Tetra-2,3-Pyridiniumporphyrazinato with Sulfonic Acid Tags as an Efficient Catalyst and Its Application for the Synthesis of Bicyclic Ortho-Aminocarbonitriles, Cyclohexa-1,3-Dienamines and 2-Amino-3-Cyanopyridines,” RSC Advances 10, no. 46 (2020): 27824–27834. (f) F. Karimi, M. Yarie, and M. A. Zolfigol, “A Novel and Reusable Ionically Tagged Nanomagnetic Catalyst: Application for the Preparation of 2-Amino-6-(2-Oxo-2H-Chromen-3-yl)-4-Arylnicotinonitriles via Vinylogous Anomeric Based Oxidation,” Molecular Catalysis 463 (2019): 20–29. (g) S. Noura, M. Ghorbani, M. A. Zolfigol, M. Narimani, M. Yarie, and M. Oftadeh, “Biological Based (Nano) Gelatoric Ionic Liquids (NGILs): Application as Catalysts in the Synthesis of a Substituted Pyrazole via Vinylogous Anomeric Based Oxidation,” Journal of Molecular Liquids 271 (2018): 778–785. doi:10.1016/j.mcat.2020.110924.
  • (a) M. Yarie, “Catalytic Anomeric Based Oxidation,” Iranian Journal of Catalysis 10, no. 1 (2017): 85–88. (b) M. Yarie, “Catalytic Vinylogous Anomeric Based Oxidation (Part I),” Iranian Journal of Catalysis (2020): 79–83. (c) J. Afsar, M. A. Zolfigol, A. Khazaei, M. Zarei, Y. Gu, D. A. Alonso, and A. Khoshnood, “Synthesis and Application of Melamine-Based Nano Catalyst with Phosphonic Acid Tags in the Synthesis of (3’-Indolyl)Pyrazolo[3,4-b]Pyridines via Vinylogous Anomeric Based Oxidation,” Molecular Catalysis 482 (2020): 110666. (d) F. Jalili, M. Zarei, M. A. Zolfigol, S. Rostamnia, and A. R. Moosavi-Zare, “SBA-15/PrN(CH2PO3H2)2 as a Novel and Efficient Mesoporous Solid Acid Catalyst with Phosphorous Acid Tags and Its Application on the Synthesis of New Pyrimido[4,5-b]Quinolones and Pyrido[2,3-d]Pyrimidines via Anomeric Based Oxidation,” Microporous and Mesoporous Materials 294 (2020): 109865. (e) M. Torabi, M. A. Zolfigol, M. Yarie, B. Notash, S. Azizian, and M. M. Azandaryani, “Synthesis of Triarylpyridines with Sulfonate and Sulfonamide Moieties via a Cooperative Vinylogous Anomeric-Based Oxidation,” Scientific Reports 11 (2021): 16846. (f) S. Kalhor, M. Yarie, M. Torabi, M. A. Zolfigol, M. Rezaeivala, and Y. Gu, “Synthesis of 2-Amino-6-(1H-Indol-3-yl)-4-Phenylnicotinonitriles and Bis (Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism,” Polycyclic Aromatic Compounds (2021): 1–16. (g) M. Torabi, M. Yarie, M. A. Zolfigol, “Synthesis of a Novel and Reusable Biological Urea Based Acidic Nanomagnetic Catalyst: Application for the Synthesis of 2‐Amino‐3‐Cyano Pyridines via Cooperative Vinylogous Anomeric Based Oxidation,” Applied Organometallic Chemistry 33, no. 6 (2019): e4933. (h) S. Kalhor, M. Zarei, M. A. Zolfigol, H. Sepehrmansourie, D. Nematollahi, S. Alizadeh, H. Shi, and J. Arjomandi, “Anodic Electrosynthesis of MIL-53 (Al)-N(CH2PO3H2)2 as a Mesoporous Catalyst for Synthesis of Novel (N-Methyl-Pyrrol)-Pyrazolo [3, 4-b] Pyridines via a Cooperative Vinylogous Anomeric Based Oxidation,” Scientific Reports 11 (2021): 19370.
  • J. Zhang, T. Zhang, and K. Yu, “The Preparation, Molecular Structure, and Theoretical Study of Carbohydrazide (CHZ),” Structural Chemistry 17, no. 3 (2006): 249–54. doi:10.1007/s11224-006-9015-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.