179
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A Highly Efficient and Eco-Friendly Synthesis of Disubstituted Imidazoles in Ionic Liquid from Gem-Dibromo Vinylarenes and Amidines

, , & ORCID Icon
Pages 3089-3098 | Received 07 Feb 2022, Accepted 27 Mar 2022, Published online: 12 Apr 2022

References

  • I. T. Horváth, “Introduction: Sustainable Chemistry,” Chemical Reviews 118, no. 2 (2018): 369–71. doi:10.1021/acs.chemrev.7b00721.
  • M. C. Bryan, P. J. Dunn, D. Entwistle, F. Gallou, S. G. Koenig, J. D. Hayler, M. R. Hickey, S. Hughes, M. E. Kopach, G. Moine, et al., “Key Green Chemistry Research Areas from a Pharmaceutical Manufacturers’ Perspective Revisited,” Green Chemistry 20, no. 22 (2018): 5082–103. doi:10.1039/C8GC01276H.
  • I. T. Horváth, and P. T. Anastas, “Introduction: Green Chemistry,” Chemical Reviews 107 (2007): 2167–8. doi:10.1021/cr0783784.
  • C. Capello, U. Fischer, and K. Hungerbühler, “What is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents,” Green Chemistry 9, no. 9 (2007): 927–34. doi:10.1039/b617536h.
  • P. G. Jessop, “Searching Green Solvents,” Green Chemistry 13, no. 6 (2011): 1391–8. doi:10.1039/c0gc00797h.
  • H. R. Safaei, M. Shekouhy, M. Rahmanpur, and S. Shirinfeshan, “Glycerol as a Biodegradable and Reusable Promoting Medium for the Catalyst-Free One-Pot Three Component Synthesis of 4H-Pyrans,” Green Chemistry 14, no. 6 (2012): 1696–704. doi:10.1039/c2gc35135h.
  • J. Tiwari, M. Saquib, S. Singh, F. Tufail, J. Singh, and J. Singh, “Catalyst-Free Glycerol-Mediated Green Synthesis of 5′-Thioxospiro[Indoline-3,3′-[1,2,4]Triazolidin]-2-Ones/Spiro[Indoline-3,3′-[1,2,4]Triazolidine]-2,5′-Diones,” Synthetic Communications 47, no. 21 (2017): 1999–2006. doi:10.1080/00397911.2017.1359844.
  • Emily B. Anderson, and Timothy E. Long, “Imidazole- and Imidazolium-Containing Polymers for Biology and Material Science Applications, “T.E. Long,” Polymer 51, no. 12 (2010): 2447–54. doi:10.1016/j.polymer.2010.02.006.
  • Z. Wang, P. Lu, S. Chen, Z. Gao, F. Shen, W. Zhang, Y. Xu, H. S. Kwok, and Y. J. Ma, “Phenanthro[9,10-d]Imidazole as a New Building Block for Blue Light Emitting Materials,” Journal of Materials Chemistry 21, no. 14 (2011): 5451–6. doi:10.1039/c1jm10321k.
  • R. J. Lowry, M. K. Veige, O. Clement, K. A. Abboud, I. Ghiviriga, and A. S. Veige, “New Constrained-Geometry C2-Symmetric Di-N-Heterocyclic Carbene Ligands and Their Mono- and Dinuclear Rhodium(I) Complexes: Design, Synthesis, and Structural Analysis,” Organometallics 27, no. 20 (2008): 5184–95. doi:10.1021/om800471m.
  • J. C. Garrison, and W. J. Youngs, “Ag(I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application,” Chemical Reviews 105, no. 11 (2005): 3978–4008. doi:10.1021/cr050004s.
  • P. Bousquet, and J. Feldman, “Drugs Acting on Imidazoline Receptors: A Review of Their Pharmacology, Their Use in Blood Pressure Control and Their Potential Interest in Cardioprotection,” Drugs 58, no. 5 (1999): 799–812. doi:10.2165/00003495-199958050-00003.
  • M. Ueno, K. Imaizumi, T. Sugita, I. Takata, and M. Takeshita, “Effect of a Novel anti-Rheumatic Drug, TA-383, on Type II Collagen-Induced Arthritis, “Inter,” International Journal of Immunopharmacology 17, no. 7 (1995): 597–603. doi:10.1016/0192-0561(95)00057-9.
  • T. Hayashi, E. Kishi, V. A. Soloshonok, and Y. Uozumi, “Erythro-Selective Aldol-Type Reaction of N-Sulfonylaldimines with Methyl Isocyanoacetate Catalyzed by Gold(I),” Tetrahedron Letters. 37, no. 28 (1996): 4969–72. doi:10.1016/0040-4039(96)00981-1.
  • M. E. Jung, and A. Huang, “Use of Optically Active Cyclic N,N-Dialkyl Aminals in Asymmetric Induction,” Organic Letters 2, no. 17 (2000): 2659–61. doi:10.1021/ol0001517.
  • Justin Dietrich, Vijay Gokhale, Xiadong Wang, Laurence H. Hurley, and Gary A. Flynn, G.A. “Flynn, Application of a Novel [3 + 2] Cycloaddition Reaction to Prepare Substituted Imidazoles and Their Use in the Design of Potent DFG-out Allosteric B-Raf Inhibitors,” Bioorganic & Medicinal Chemistry 18, no. 1 (2010): 292–304. doi:10.1016/j.bmc.2009.10.055.
  • C. J. Dinsmore, T. M. Williams, T. J. O'Neill, D. Liu, E. Rands, J. C. Culberson, R. B. Lobell, K. S. Koblan, N. E. Kohl, J. B. Gibbs, et al, “Imidazole-Containing Diarylether and Diarylsulfone Inhibitors of Farnesyl-Protein Transferase,” Bioorganic & Medicinal Chemistry Letters 9, no. 23 (1999): 3301–6., doi:10.1016/S0960-894X(99)00605-8.
  • J. Heeres, L. J. Backx, J. H. Mostmans, and J. Van Cutsem, “Antimycotic Imidazoles. part 4. Synthesis and Antifungal Activity of Ketoconazole, a New Potent Orally Active Broad-Spectrum Antifungal Agent,” Journal of Medicinal Chemistry 22, no. 8 (1979): 1003–5. doi:10.1021/jm00194a023.
  • S. N. Riduan, and Y. Zhang, “Imidazolium Salts and Their Polymeric Materials for Biological Applications,” Chemical Society Reviews 42, no. 23 (2013): 9055–70. doi:10.1039/c3cs60169b.
  • S. Kantevari, S. V. Vuppalapati, D. O. Biradar, and L. Nagarapu, “Highly Efficient, One-Pot, Solvent-Free Synthesis of Tetrasubstituted Imidazoles Using HClO4-SiO2 as Novel Heterogeneous Catalyst,” Journal of Molecular Catalysis A: Chemical 266, no. 1–2 (2007): 109–13. doi:10.1016/j.molcata.2006.10.048.
  • L. Nagarapu, S. Apuri, and S. Kantevari, “Highly Efficient, One-Pot, Solvent-Free Synthesis of Tetrasubstituted Imidazoles Using HClO4–SiO2 as Novel Heterogeneous Catalyst,” Journal of Molecular Catalysis A: Chemical 266, no. 1–2 (2007): 104–8. doi:10.1016/j.molcata.2006.10.056.
  • Baoliang Cui, Bo Lin Zheng, Kan He, and Qun Yi Zheng, “Imidazole Alkaloids from Lepidium Meyenii,” Journal of Natural Products 66, no. 8 (2003): 1101–3. doi:10.1021/np030031i.
  • T. Kumar, D. Verma, R. F. S. Menna-Barreto, W. O. Valenca, E. N. da Silva Junior, and I. N. N. Namboothiri, “Synthesis of Imidazoles via Cascade Reaction of Nitroallylic Acetates with Amidines and Studies on Their Trypanocidal Activity,” Organic & Biomolecular Chemistry 13, no. 7 (2015): 1996–2000. doi:10.1039/c4ob02561j.
  • H.-R. Bjoersvik, and A. H. Sandtorv, “Synthesis of Imidazole Alkaloids Originated in Marine Sponges,” Studies in Natural Products Chemistry. 42 (2014): 33–57.
  • L.-X. Liu, X.-Q. Wang, J.-M. Yan, Y. Li, C.-J. Sun, W. Chen, B. Zhou, H. B. Zhang, and X.-D. Yang, “Synthesis and Antitumor Activities of Novel Dibenzo[b,d]Furan-Imidazole Hybrid Compounds,” European Journal of Medicinal Chemistry 66 (2013): 423–37. doi:10.1016/j.ejmech.2013.06.011.
  • H. Koga, Y. Nanjoh, K. Makimura, and R. Tsuboi, “In Vitro Antifungal Activities of Luliconazole, a New Topical Imidazole,” Medical Mycology 47, no. 6 (2009): 640–7. doi:10.1080/13693780802541518.
  • M. Antolini, A. Bozzoli, C. Ghiron, G. Kennedy, T. Rossi, and A. Ursini, “Analogues of 4,5-Bis(3,5-Dichlorophenyl)-2-Trifluoromethyl-1H-Imidazole as Potential Antibacterial Agents,” Bioorganic & Medicinal Chemistry Letters 9, no. 7 (1999): 1023–8. doi:10.1016/S0960-894X(99)00112-2.
  • B. Szabo, “Imidazoline Antihypertensive Drugs: A Critical Review on Their Mechanism of Action,” Pharmacology & Therapeutics 93, no. 1 (2002): 1–35. doi:10.1016/S0163-7258(01)00170-X.
  • T. T. Kong, C. M. Zhang, and Z. P. Liu, “Recent Developments of p38α MAP Kinase Inhibitors as Antiinflammatory Agents Based on the Imidazole Scaffolds,” Current Medicinal Chemistry 20, no. 15 (2013): 1997–2016. doi:10.2174/0929867311320150006.
  • G. Le. Bihan, F. Rondu, A. Pele-Tounian, X. Wang, S. Lidy, E. Touboul, A. Lamouri, G. Dive, J. Huet, B. Pfeiffer, et al., “Design and Synthesis of Imidazoline Derivatives Active on Glucose Homeostasis in a Rat Model of Type II Diabetes. 2. Syntheses and Biological Activities of 1,4-Dialkyl-, 1,4-Dibenzyl, and 1-Benzyl-4-Alkyl-2-(4',5'-Dihydro-1'H-Imidazol-2'-yl)Piperazines and Isosteric Analogues of Imidazoline,” Journal of Medicinal Chemistry 42, no. 9 (1999): 1587–603. doi:10.1021/jm981099b.
  • S. M. Sondhi, S. Jain, M. Dinodia, and A. Kumar, “ Synthesis of some thiophene, imidazole and pyridine derivatives exhibiting good anti-inflammatory and analgesic activities ,” Medicinal Chemistry (Shariqah (United Arab Emirates)) 4, no. 2 (2008): 146–54. doi:10.2174/157340608783789194.
  • Y. L. Fan, X. H. Jin, Z. P. Huang, H. F. Yu, Z. G. Zeng, T. Gao, and L. S. Feng, “Recent Advances of Imidazole-Containing Derivatives as anti-Tubercular Agents,” European Journal of Medicinal Chemistry 150 (2018): 347–65. doi:10.1016/j.ejmech.2018.03.016.
  • Swastika Ganguly, Vatsal Vijay Vithlani, Anup Kumar Kesharwani, Ritu Kuhu, Lakshmanan Baskar, Papiya Mitramazumder, Ashok Sharon, and Abhimanyu Dev, “Synthesis, Antibacterial and Potential anti-HIV Activity of Some Novel Imidazole Analogs,” Acta Pharmaceutica (Zagreb, Croatia) 61, no. 2 (2011): 187–201. doi:10.2478/v10007-011-0018-2.
  • A. A. Marzouk, A. K. A. Bass, M. S. Ahmed, A. A. Abdelhamid, Y. A. M. M. Elshaier, A. M. M. Salman, and O. M. Aly, “Design, Synthesis and Anticonvulsant Activity of New Imidazolidindione and Imidazole Derivatives,” Bioorganic Chemistry 101 (2020): 104020. doi:10.1016/j.bioorg.2020.104020.
  • C. Hamdouchi, J. De Blas, M. del Prado, J. Gruber, B. A. Heinz, L. Vance, C. Hamdouchi, J. De Blas, M. del Prado, J. Gruber, et al, “2-Amino-3-Substituted-6-[(E)-1-Phenyl-2-(N-Methylcarbamoyl)Vinyl]Imidazo[1,2-a] Pyridines as a Novel Class of Inhibitors of Human Rhinovirus: Stereospecific Synthesis and Antiviral Activity,” Journal of Medicinal Chemistry 42, no. 1 (1999): 50–9. doi:10.1021/jm9810405.
  • G. S. G. De Carvalho, P. A. Machado, D. T. S. de Paula, E. S. Coimbra, and A. D. Da Silva, “Synthesis, Cytotoxicity, and Antileishmanial Activity of N,N'-Disubstituted Ethylenediamine and Imidazolidine Derivatives,” The Scientific World Journal 10 (2010): 1723–30. doi:10.1100/tsw.2010.176.
  • R. Dahiya, A. Kumar, and R. Yadav, “Synthesis and Biological Activity of Peptide Derivatives of Iodoquinazolinones/Nitroimidazoles,” Molecules (Basel, Switzerland) 13, no. 4 (2008): 958–76. doi:10.3390/molecules13040958.
  • X. Guo, J. Shao, H. Liu, B. Chen, W. Chen, and Y. Yu, “Highly Efficient and Eco-Friendly Protocol to Functionalized Imidazoles via Ring-Opening of α-Nitro Epoxides,” RSC Advances 5, no. 64 (2015): 51559–62. doi:10.1039/C5RA07770B.
  • S. Shi S, K. Xu, C. Jiang, and Z. Ding, “ZnCl2-Catalyzed [3 + 2] Cycloaddition of Benzimidates and 2 H-Azirines for the Synthesis of Imidazoles,” The Journal of Organic Chemistry 83, no. 23 (2018): 14791–6. doi:10.1021/acs.joc.8b02437.
  • C. Y. Chen, W. P. Hu, P. C. Yan, G. C. Senadi, and J. J. Wang, “Metal-Free, Acid-Promoted Synthesis of Imidazole Derivatives via a Multicomponent Reaction,” Organic Letters 15, no. 24 (2013): 6116–9. doi:10.1021/ol402892z.
  • Z. Jiang, P. Lu, and Y. Wang, “Synthesis of Bicyclic Imidazoles via [2 + 3] Cycloaddition between Nitriles and Regioselectively Generated α-Imino Gold Carbene Intermediates,” Organic Letters. 14 (2012): 4662–5.
  • Y. Wang, H. Shen, and Z. Xie, “Atom-Economical Synthesis of 2-Aminoimidazoles via [3 + 2] Annulation Catalyzed by Titanacarborane Monoamide,” Synlett 2011, no. 07 (2011): 969–73. doi:10.1055/s-0030-1259713.
  • D. Tang, P. Wu, X. Liu, Y. X. Chen, S. B. Guo, W. L. Che, J. G. Li, and B. H. Chen, “Synthesis of Multisubstituted Imidazoles via Copper-Catalyzed [3 + 2] Cycloadditions,” The Journal of Organic Chemistry 78, no. 6 (2013): 2746–50. doi:10.1021/jo302555z.
  • X. Y. Chen, U. Englert, and C. Bolm, “Base-Mediated Syntheses of Di- and Trisubstituted Imidazoles from Amidine Hydrochlorides and Bromoacetylenes “Chem,” Chemistry (Weinheim an Der Bergstrasse, Germany) 21, no. 38 (2015): 13221–4. doi:10.1002/chem.201502707.
  • J. Li, and L. Neuville, “Copper-Catalyzed Oxidative Diamination of Terminal Alkynes by Amidines: Synthesis of 1,2,4-Trisubstituted Imidazoles,” Organic Letters 15, no. 7 (2013): 1752–5. doi:10.1021/ol400560m.
  • Y. Li, L. Cheng, Y. Shao, S. Jiang, J. Cai, and N. Qing, “Practical Synthesis of Polysubstituted Haloimidazoles from 1,1-Dibromoalkenes and Amidines,” European Journal of Organic Chemistry 2015, no. 20 (2015): 4325–9. doi:10.1002/ejoc.201500305.
  • N. Azizi, N. Dado, and A. K. Amiri, “Highly Efficient One-Pot Synthesis of Trisubstituted Imidazoles under Catalyst-Free Conditions,” Canadian Journal of Chemistry 90, no. 2 (2012): 195–8. doi:10.1139/v11-141.
  • A. A. Nadaf, S. R. Bulbule, M. Yaseen, M. S. Najare, S. Mantur, and I. A. M. Khazi, “Synthesis of 1,2-Disubstituted Imidazole Derivatives as Potent Inhibitors of Mycobacterium tuberculosis and Their in Silico,” Chemistryselect 6, no. 1 (2021): 9–15. doi:10.1002/slct.202003731.
  • L. G. Mueller, A. Chao, E. AlWedi, and F. F. Fleming, “ One-step synthesis of imidazoles from Asmic (anisylsulfanylmethyl isocyanide) ,” Beilstein Journal of Organic Chemistry 17 (2021): 1499–502. doi:10.3762/bjoc.17.106.
  • J. Sisko, A. J. Kassick, M. Mellinger, J. J. Filan, A. Allen, and M. A. Olsen, “An Investigation of Imidazole and Oxazole Syntheses Using Aryl-Substituted TosMIC Reagents,” The Journal of Organic Chemistry 65, no. 5 (2000): 1516–24. doi:10.1021/jo991782l.
  • N. Aziizi, Z. Manochehri, A. Nahayi, and S. Torkashvand, “A Facile One-Pot Synthesis of Tetrasubstituted Imidazoles Catalyzed by Eutectic Mixture Stabilized Ferrofluid,” Journal of Molecular Liquids 196 (2014): 153–8. doi:10.1016/j.molliq.2014.03.013.
  • Z. Lei, B. Chen, Y.-M. Koo, and D. R. MacFarlane, “Introduction: Ionic Liquids,” Chemical Reviews 117, no. 10 (2017): 6633–5. doi:10.1021/acs.chemrev.7b00246.
  • T. Welton, “Ionic Liquids: A Brief History,” Biophysical Reviews 10, no. 3 (2018): 691–706. doi:10.1007/s12551-018-0419-2.
  • X. Tan, X. Liu, X. Yao, Y. Zhang, and K. Jiang, “Theoretical Study of Ionic Liquid Clusters Catalytic Effect on the Fixation of CO2,” Industrial & Engineering Chemistry Research 58, no. 1 (2019): 34–43. doi:10.1021/acs.iecr.8b03947.
  • Y. Abdullayev, O. Ahmadov, G. Valadova, A. Karimli, and J. Autschbach, “Unveiling the Catalytic Effects of Brønsted Acidic Ionic Liquid on Quantitative α-Glucose Conversion to 5-HMF: Experimental and Computational Studies,” Renewable Energy 171 (2021): 383–90. doi:10.1016/j.renene.2021.02.119.
  • I. Valiyev, Y. Abdullayev, S. Yagubova, S. Baybekov, C. Salmanov, and J. Autschbach, “Acidic Ionic Liquid Catalyzed Benzylic C(sp3)H Bond Activation and CN, CC Cross Couplings,” Journal of Molecular Liquids 280 (2019): 410–9. doi:10.1016/j.molliq.2019.02.035.
  • P. N. Borase, P. B. Thale, and G. S. Shankarling, “A Choline Hydroxide Catalyzed Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones in an Aqueous Medium,” RSC Advances 6, no. 67 (2016): 63078–83. doi:10.1039/C6RA15574J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.