382
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones

& ORCID Icon
Pages 3099-3121 | Received 21 Feb 2022, Accepted 27 Mar 2022, Published online: 07 Apr 2022

References

  • Q. Shi, Z. C. Tan, Y. Y. Di, B. Tong, Y. S. Li, and S. X. Wang, “Thermal Analysis and Calorimetric Study of 4-Dimethylaminopyridine,” Journal of Chemical and Engineering Data 52, no. 3 (2007): 941–7. doi:10.1021/je6005423.
  • (a) M. Baidya, S. Kobayashi, F. Brotzel, U. Schmidhammer, E. Riedle, and H. Mayr, “DABCO and DMAP – Why are they Different in Organocatalysis?” Angewandte Chemie (International ed. in English) 46, no. 32 (2007): 6176–9. doi:10.1002/anie.200701489; (b) W. Steglich and G. Hofle, “N,N-Dimethyl-.l-Pyridinamine, A Very Effective Acylation Catalyst,” Angewandte Chemie International Edition 8 (1969): 981.
  • S. E. Denmark and G. L. Beutner, “Lewis Base Catalysis in Organic Synthesis,” Angewandte Chemie (International ed. in English) 47, no. 9 (2008): 1560–638. doi:10.1002/anie.200604943.
  • A. C. Spivey and S. Arseniyadis, “Nucleophilic Catalysis by 4-(Dialkylamino)Pyridines Revisited – the Search for Optimal Reactivity and Selectivity,” Angewandte Chemie (International ed. in English) 43, no. 41 (2004): 5436–41. doi:10.1002/anie.200460373.
  • R. H. C. N. Freitas and D. R. da Rocha, “4-(Dimethylamino)Pyridine as Multivalent Catalyst in Organic Synthesis,” Australian Journal of Chemistry 74, no. 5 (2021): 364–6. doi:10.1071/CH20204.
  • C. Alberti and S. Enthaler, “Depolymerization of End-of-Life Poly(Bisphenol a Carbonate) via 4-Dimethylaminopyridine-Catalyzed Methanolysis,” Waste and Biomass Valorization 11, no. 9 (2020): 4621–9. doi:10.1007/s12649-019-00794-8.
  • H. X. Liu, Y. Q. Dang, Y. F. Yuan, Z. F. Xu, S. X. Qiu, and H. B. Tan, “Diacyl Disulfide: A Reagent for Chemoselective Acylation of Phenols Enabled by 4-(N,N-Dimethylamino)Pyridine Catalysis,” Organic Letters 18, no. 21 (2016): 5584–7. doi:10.1021/acs.org.6b02818
  • Z. Liu, Q. Ma, Y. Liu, and Q. Wang, “4-(N,N-Dimethylamino)Pyridine Hydrochloride as a Recyclable Catalyst for Acylation of Inert Alcohols: Substrate Scope and Reaction Mechanism,” Organic Letters 16, no. 1 (2014): 236–9. doi:10.1021/ol4030875.
  • N. De Rycke, O. David, and F. Couty, “Assessing the Rates of Ring-Opening of Aziridinium and Azetidinium Ions: A Dramatic Ring Size Effect,” Organic Letters 13, no. 7 (2011): 1836–9. doi:10.1021/ol200348k.
  • G. Liu, M. E. Shirley, and D. Romo, “A Diastereoselective, Nucleophile-Promoted Aldol-Lactonization of Ketoacids Leading to Bicyclic-β-Lactones,” The Journal of Organic Chemistry 77, no. 5 (2012): 2496–500. doi:10.1021/jo202252y.
  • S. Naumann, P. B. V. Scholten, J. A. Wilson, and A. P. Dove, “Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution toward Simplicity,” Journal of the American Chemical Society 137, no. 45 (2015): 14439–45. doi:10.1021/jacs.5b09502.
  • J. Kadota, D. Pavlovic, J. P. Desvergne, B. Bibal, F. Peruch, and A. Deffieux, “Ring-Opening Polymerization of L-Lactide Catalyzed by an Organocatalytic System Combining Acidic and Basic Sites,” Macromolecules 43, no. 21 (2010): 8874–9. doi:10.1021/ma101688d.
  • D. Konning, W. Hiller, and M. Christmann, “One-Pot Oxidation/Isomerization of Z-Allylic Alcohols with Oxygen as Stoichiometric Oxidant,” Organic Letters 14, no. 20 (2012): 5258–61. doi:10.1021/ol302420k.
  • (a) I. Deb, M. Dadwal, S. M. Mobin, and I. N. N. Namboothir, “Hydroxyalkylation of Conjugated Nitroalkenes with Activated Nonenolizable Carbonyl Compounds,” Organic Letters 8, no. 6 (2006): 1201–4. doi:10.1021/ol060041l; (b) R. Octavio, M. A. de Souza, and M. L. A. A. Vasconcellos, “The Use of DMAP as Catalyst in the Baylis–Hillman Reaction between Methyl Acrylate and Aromatic Aldehydes,” Synthetic Communications 33, no. 8 (2003): 1383–9. doi:10.1081/SCC-120018699
  • J. P. Hsu and J. J. Wong, “Melt Transesterification of Polycarbonate Catalyzed by DMAP,” Industrial and Engineering Chemistry Research 45, no. 8 (2006): 2672–6. doi:10.1021/ie050726+.
  • D. Bonafoux and I. Ojima, “Novel DMAP-Catalyzed Skeletal Rearrangement of 5-Exo-(2-Hydroxy-Ethylene)Oxasilacyclopentanes,” Organic Letters 3, no. 15 (2001): 2333–5. doi:10.1021/ol016153o.
  • M. O. Ganiu, A. H. Cleveland, J. L. Paul, and R. Kartika, “Triphosgene and DMAP as Mild Reagents for Chemoselective Dehydration of Tertiary Alcohols,” Organic Letters 21, no. 14 (2019): 5611–5. doi:10.1021/acs.orglett.9b01959.
  • T. Ghosh, A. Mukherji, and P. K. Kancharla, “Influence of Anion-Binding Schreiner's Thiourea on DMAP Salts: Synergistic Catalysis toward the Stereoselective Dehydrative Glycosylation from 2-Deoxyhemiacetals,” The Journal of Organic Chemistry 86, no. 1 (2021): 1253–61. doi:10.1021/acs.joc.0c02473.
  • A. K. Ghosh and D. Shahabi, “Synthesis of Amide Derivatives for Electron Deficient Amines and Functionalized Carboxylic Acids Using EDC and DMAP and a Catalytic Amount of HOBt as the Coupling Reagents,” Tetrahedron Letters 63 (2021): 152719. doi:10.1016/j.tetlet.2020.152719.
  • C. D’Silva, “A Synthetic Route to 1-(4-Boronobenzyl)-1H-Pyrrole,” Journal of Chemical Research 45, nos. 7–8 (2021): 655–9. doi:10.1177/1747519820960692.
  • H. Rámirez, J. R. Rodrigues, M. R. Mijares, J. B. De Sanctis, and J. E. Charris, “Synthesis and Biological Activity of 2-[2-(7-Chloroquinolin-4-Ylthio)-4-methylthiazol5-yl]-N-Phenylacetamide Derivatives as Antimalarial and Cytotoxic Agents,” Journal of Chemical Research 44, no. 5–6 (2020): 305–14. doi:10.1177/1747519819899073.
  • C. Colmenarez, M. Acosta, M. Rodríguez, and J. Charris, “Synthesis and Antimalarial Activity of (S)-Methyl-(7-Chloroquinolin-4-Ylthio) Acetamidoalquilate Derivatives,” Journal of Chemical Research 44, no. 3–4 (2020): 161–6. doi:10.1177/1747519819890559.
  • Y. Wu, Y. P. Sun, Y. Q. Yang, Q. Hu, and Q. Zhang, “Removal of Thiazolidinethione Auxiliaries with Benzyl Alcohol Mediated by DMAP,” The Journal of Organic Chemistry 69, no. 18 (2004): 6141–4. doi:10.1021/jo049204e.
  • M. Q. Zhou, J. Q. Zhao, Y. You, X. Y. Xu, X. M. Zhang, and W. C. Yuan, “DMAP-Catalyzed Diels-Alder Reaction of 3-Hydroxy-2-Pyrone and Methyleneindolinones for the Synthesis of Spirocyclic Oxindoles,” Tetrahedron 71, no. 23 (2015): 3903–8. doi:10.1016/j.tet.2015.04.032.
  • M. Moritaka, K. Nakano, Y. Ichikawa, and H. Kotsuki, “Efficient Organocatalytic Michael Addition Reaction of β-Ketoesters under High Pressure,” Heterocycles 87, no. 11 (2013): 2351–60. doi:10.3987/COM-13-12818.
  • J. He, R. G. Sun, L. Fan, S. Y. Tian, T. P. Huang, Z. Chen, and L. Chen, “4-(N,N-Dimethylamino)Pyridine (DMAP)-Catalyzed 1,3-Dipolar Cycloaddition of 3-Aminooxindole-Based Azomethine Ylides with α,β-Unsaturated Acyl Phosphonates for the Construction of Spiropyrrolidinyl-2,3′-Oxindoles,” Synthesis 51, no. 06 (2019): 1353–64. doi:10.1055/s-0037-1610848.
  • X. W. Liu, J. Yue, Z. Li, D. Wu, M. Y. Tian, Q. L. Wang, and Y. Zhou, “DMAP-Catalyzed Decarboxylative [3 + 2] Cycloadditions: A Strategy for Diastereoselective Synthesis of Trifluoromethylated Chromanone-Fused Pyrrolidinyl Spirooxindoles,” Tetrahedron 76, no. 49 (2020): 131678. doi:10.1016/j.tet.2020.131678.
  • Y. Jung, J. E. Hong, S. T. Baek, S. Hong, J. H. Kwak, and Y. Park, “4-Dimethylaminopyridine-Catalyzed Metal-Free Aerobic Oxidation of Aryl α-Halo Esters to Aryl α-Keto Esters,” ACS Omega 5, no. 36 (2020): 22951–7. doi:10.1021/acsomega.0c02511.
  • C. Q. Li, and M. Shi, “Reactions of Arylaldehydes and N-Sulfonated Imines with Dimethyl Acetylenedicarboxylate Catalyzed by Nitrogen and Phosphine Lewis Bases,” Organic Letters 5, no. 23 (2003): 4273–6. doi:10.1021/ol0354324.
  • L. Zeng, Z. Lai, and S. Cui, “One-Pot Reaction of Carboxylic Acids and YNOL Ethers for the Synthesis of β-Keto Esters,” The Journal of Organic Chemistry 83, no. 23 (2018): 14834–41. doi:10.1021/acs.joc.8b02715.
  • G. C. Nandi, S. Samai, and M. S. Singh, “One-Pot Two-Component [3 + 2] Cycloaddition/Annulation Protocol for the Synthesis of Highly Functionalized Thiophene Derivatives,” The Journal of Organic Chemistry 76, no. 19 (2011): 8009–14. doi:10.1021/jo200685e.
  • Y. Yokouchi, and T. Iwamoto, “One-Pot Condensation of a Bicyclo[1.1.1]Pentasilane through Elimination of Iodotrimethylsilane Assisted by a Lewis Base,” Organometallics 39, no. 18 (2020): 3301–5. doi:10.1021/acs.organomet.0c00514.
  • E. B. Castillo-Contreras, and G. R. Dake, “DMAP Promoted Tandem Addition Reactions Forming Substituted Tetrahydroxanthones,” Organic Letters 16, no. 6 (2014): 1642–5. doi:10.1021/ol5002945.
  • L. G. Meng, P. Cai, Q. Guo, and S. Xue, “Cycloaddition of Alkynyl Ketones with N-Tosylimines Catalyzed by Bu3P and DMAP: Synthesis of Highly Functionalized Pyrrolidines and Azetidines,” The Journal of Organic Chemistry 73, no. 21 (2008): 8491–6. doi:10.1021/jo801687v.
  • Y. N. Huang, Y. L. Li, J. Li, and J. Deng, “Beyond a Protecting Reagent: DMAP-Catalyzed Cyclization of Boc-Anhydride with 2-Alkenylanilines,” The Journal of Organic Chemistry 81, no. 11 (2016): 4645–53. doi:10.1021/acs.joc.6b00519.
  • N. Bania, B. Mondal, S. Ghosh, and S. C. Pan, “DMAP Catalyzed Domino Rauhut–Currier Cyclization Reaction between Alkylidene Pyrazolones and Nitro-olefins: Access to Tetrahydropyrano[2,3-c]pyrazoles,” The Journal of Organic Chemistry 86, no. 5 (2021): 4304–12. doi:0.1021/acs.joc.0c02871 doi:10.1021/acs.joc.0c02871.
  • Y. Jung, J. E. Hong, J. H. Kwak, and Y. Park, “Single-Step Approach toward Nitrones via Pyridinium Ylides: The DMAP-Catalyzed Reaction of Benzyl Halides with Nitrosoarenes,” The Journal of Organic Chemistry 86, no. 9 (2021): 6343–50. doi:10.1021/acs.joc.1c00158.
  • Q. Zhang, L. G. Meng, J. Zhang, and L. Wang, “DMAP-Catalyzed [2 + 4] Cycloadditions of Allenoates with N-Acyldiazenes: Direct Method to 1,3,4-Oxadiazine Derivatives,” Organic Letters 17, no. 13 (2015): 3272–5. doi:10.1021/acs.orglett.5b01237.
  • J. Peng, J. J. Xiang, H. J. Wang, F. B. Li, Y. S. Huang, L. Liu, C. Y. Liu, A. M. Asiri, and K. A. Alamry, “DMAP-Mediated Synthesis of Fulleropyrrolines: Reaction of [60]Fullerene with Aromatic Aldehydes and Arylmethanamines in the Absence or Presence of Manganese(III) Acetate,” The Journal of Organic Chemistry 82, no. 18 (2017): 9751–64. doi:10.1021/acs.joc.7b01968.
  • Y. Zhu and Y. Huang, “Construction of CF3-Containing Tetrahydropyrano[3,2-b]indoles Through DMAP-Catalyzed [4 + 1]/[3 + 3] Domino Sequential Annulation,” Organic Letters 22, no. 17 (2020): 6750–5. doi:10.1021/acs.org.lett.0c02164
  • L. Q. Lu, Y. J. Cao, X. P. Liu, J. An, C. J. Yao, Z. H. Ming, and W. J. Xiao, “A New Entry to Cascade Organocatalysis: Reactions of Stable Sulfur Ylides and Nitroolefins Sequentially Catalyzed by Thiourea and DMAP,” Journal of the American Chemical Society 130, no. 22 (2008): 6946–8. doi:10.1021/ja800746q.
  • N. H. Thanh, H. T. Phuong, L. N. T. Giang, N. T. Q. Giang, N. T. T. Ha, D. T. T. Anh, V. D. Cuong, N. V. Tuyen, and P. V. Kiem, “4-(Dimethylamino)Pyridine as an Efficient Catalyst for One-Pot Synthesis of 1,4-Pyranonaphthoquinone Derivatives via Microwave-Assisted Sequential Three Component Reaction in Green Solvent,” Natural Product Communications 16, no. 11 (2021): 1934578X2110539–7. doi:10.1177/1934578X211053951.
  • L. N. T. Giang, D. T. T. Anh, H. T. Phuong, N. H. Thanh, N. T. Q. Giang, N. T. Anh, N. V. Tuyen, and P. V. Kiem, “DMAP-Catalyzed Efficient and Convenient Approach for the Synthesis of 3,3′-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives,” Natural Product Communications 16, no. 9 (2021): 1934578X2110458–7. doi:10.1177/1934578X2110458.
  • C. Derabli, R. Boulcina, G. Kirsch, B. Carboni, and A. Debache, “A DMAP-Catalyzed Mild and Efficient Synthesis of 1,2-Dihydroquinazolines via a One-Pot Three-Component Protocol,” Tetrahedron Letters 55, no. 1 (2014): 200–4. doi:10.1016/j.tetlet.2013.10.157.
  • G. Shi, X. He, Y. Shang, L. Xiang, C. Yang, G. Han, and B. Du, “Synthesis of 3’,4’-Diaryl-4’H-Spiro[Indoline-3’5’-[1’,2’,4’]-Oxadiazol]-2-Ones via DMAP-Catalyzed Domino Reactions and Their Antibacterial Activity,” Chinese Journal of Chemistry 34, no. 9 (2016): 901–9. doi:10.1002/cjoc.201600285.
  • J. Jin, Q. Xu, and W. Deng, “DMAP‐Catalyzed [4 + 2] Cycloaddition of α,β‐Unsaturated Carboxylic Acids with Ketones for Synthesis of α,β‐Unsaturated δ‐Lactones,” Chinese Journal of Chemistry 35, no. 4 (2017): 397–400. doi:10.1002/cjoc.201600929.
  • M. Khashi, A. Davoodnia, and V. S. P. Rao, “DMAP Catalyzed Synthesis of Some New Pyrrolo[3,2-e] [1,2,4]Triazolo[1,5-c]Pyrimidines,” Research on Chemical Intermediates 41, no. 8 (2015): 5731–42. doi:10.1007/s11164-014-1697-3.
  • C. Fan, X. He, K. Liao, C. Wang, and Y. Shang, “4-dimethylaminopyridine-Catalyzed Cascade Reaction for Efficient Synthesis of Naphthofurans,” Chemical Research in Chinese Universities 32, no. 1 (2016): 62–7. doi:10.1007/s40242-016-5245-0.
  • K. Araki, T. Katagiri, and M. Inoue, “Facile Synthesis of 1,7,8-Trifluoro-2-Naphthol via DMAP Catalyzed Cycloaromatization,” Journal of Fluorine Chemistry 157 (2014): 41–7. doi:10.1016/j.jfluchem.2013.11.005.
  • A. Gellis, N. Primas, S. Hutter, G. Lanzada, V. Remusat, P. Verhaeghe, P. Vanelle, and N. Azas, “Looking for New Antiplasmodial Quinazolines: DMAP-Catalyzed Synthesis of 4-Benzyloxy- and 4-Aryloxy-2-Trichloromethylquinazolines and Their In Vitro Evaluation toward Plasmodium falciparum,” European Journal of Medicinal Chemistry 119 (2016): 34–44. doi:10.1016/j.ejmech.2016.04.059.
  • V. Nair, N. Vidya, A. T. Biju, A. Deepthi, K. G. Abhilash, and E. Suresh, “DMAP Catalyzed Reaction of b-Ketoesters and Dimethyl Acetylenedicarboxylate: Efficient Synthesis of Polysubstituted Benzenes and Biaryls,” Tetrahedron 62, no. 43 (2006): 10136–40. doi:10.1016/j.tet.2006.08.031.
  • L. Wang, G. Zhu, W. Tang, T. Lu, and D. Du, “DMAP-Promoted In Situ Activation of Bromoacetic Acid as a 2-Carbon Synthon for Facile Synthesis of Pyridines and Fused Pyridin-2-Ones,” Tetrahedron 72, no. 41 (2016): 6510–7. doi:10.1016/j.tet.2016.08.062.
  • T. Yao, X. Liang, Z. Guo, and D. Yang, “Highly Stereoselective Synthesis of (Z)-3-Methoxy-1-Methyleneisoindoles via DMAP Catalyzed Cyclization of Methyl 2-Alkynylbenzimidates,” Tetrahedron 75, no. 23 (2019): 3088–100. doi:10.1016/j.tet.2019.04.036.
  • N. Maripally, V. R. Reddy, R. Donthi, R. Mutyala, and R. Chandra, “DMAP Catalyzed Addition-Cyclization Reaction of 2-Hydroxyphenyl-Paraquinone Methide with Nitroalkenes: Facile Entry into Highly Substituted Chromane Derivatives,” Tetrahedron Letters 61, no. 9 (2020): 151554. doi:10.1016/j.tetlet.2019.151554.
  • J. Xu, W. Yang, W. Shi, B. Mao, Y. Lin, Y. Xiao, and H. Guo, “DMAP-Catalyzed [4 + 2] Annulation of α-Substituted Allenoates with Unsaturated Pyrazolones,” Tetrahedron 75, no. 26 (2019): 3609–16. doi:10.1016/j.tet.2019.05.028.
  • H. J. Rong, T. Chen, Z. G. Xu, T. D. Su, Y. Shang, Y. Q. Wang, and C. F. Yang, “4-Dimethylaminopyridine-Catalyzed Synthesis of Isothiocyanates from Amines and Carbon Disulfide,” Tetrahedron Letters 68 (2021): 152868. doi:10.1016/j.tetlet.2021.152868.
  • S. Bhattacharjee, and A. T. Khan, “One-Pot Three Component Synthesis of 3,5-Disubstituted 2,6-Dicyanoaniline Derivatives Using 4-Dimethylaminopyridine (DMAP) as a Catalyst,” Tetrahedron Letters 57, nos. 27–28 (2016): 2994–7. doi:10.1016/j.tetlet.2016.05.097.
  • Y. Zhang, F. Chen, Y. Yang, C. Z. Tang, F. Tian, L. Peng, and L. X. Wang, “An Unexpected Metal-Free DMAP Catalyzed Michael Addition–Elimination Domino Reaction between 2-Naphthols and Bromomaleimides for the Effective Construction of 3-Arylmaleimides,” Tetrahedron Letters 57, no. 11 (2016): 1261–4. doi:10.1016/j.tetlet.2016.02.016.
  • P. Kour, A. Kumar, and V. K. Rai, “Aqueous Microwave-Assisted DMAP Catalyzed Synthesis of β-Phosphonomalonates and 2-Amino-4H-Chromen-4-Ylphosphonates via a Domino Knoevenagel-Phospha-Michael Reaction,” Comptes Rendus Chimie 20, no. 2 (2017): 140–5. doi:10.1016/j.crci.2016.05.013.
  • A. R. Bhat, G. A. Naikoo, I. Ul Hassan, R. S. Dongra, and T. Ara, “Ultrasound Assisted One Pot Expeditious Synthesis of New Pyrido[2,3-d]Pyrimidine Analogues Using Mild and Inexpensive 4-Dimethylaminopyridine (DMAP) Catalyst,” Beni-Suef University Journal of Basic and Applied Sciences 6, no. 3 (2017): 238–46. doi:10.1016/j.bjbas.2017.04.005.
  • K. Uma, and H. S. Lalithamba, “Dehydrosulfurization of Protected Thioureas to Carbodiimides Employing (Boc)2O and DMAP,” Chemical Data Collections 27 (2020): 100378. doi:0.1016/j.cdc.2020.100378 doi:10.1016/j.cdc.2020.100378.
  • M. Khashi, A. Davoodnia, and J. Chamani, “Dmap-Catalyzed Synthesis of Novel Pyrrolo[2,3-D]Pyrimidine Derivatives Bearing an Aromatic Sulfonamide Moiety,” Phosphorus, Sulfur, and Silicon and the Related Elements 189, no. 6 (2014): 839–48. doi:10.1080/10426507.2013.858253.
  • (a) H. G. Kathrotiya, and M. P. Patel, “Microwave-Assisted Synthesis of 30-Indolyl Substituted 4H-Chromenes Catalyzed by DMAP and Their Antimicrobial Activity,” Medicinal Chemistry Research 21, no. 11 (2012): 3406–16. doi:10.1016/j.tetlet.2011.08.019 (b) A. T. Khan, M. Lal, S. Ali, and M. M. Khan, “One-Pot Three-Component Reaction for the Synthesis of Pyran Annulated Heterocyclic Compounds Using DMAP as a Catalyst,” Tetrahedron Letters 52 (2011): 5327–32. doi:10.1007/s00044-011-9861-4.
  • R. Li, K. Wei, W. Chen, L. Li, and H. Zhang, “ Carbon-Sulfur Bond Formation: Tandem Process for the Synthesis of Functionalized Isothiazoles,” Organic Letters 24, no. 1 (2022): 339–43. doi:10.1021/acs.orglett.1c03994.
  • M. H. Kim and J. Kim, “Aerobic Oxidation of Alkyl 2-Phenylhydrazinecarboxylates Catalyzed by CuCl and DMAP,” The Journal of Organic Chemistry 83, no. 3 (2018): 1673–9. doi:10.1021/acs.joc.7b03119.
  • X. He, R. Li, P. Y. Choy, T. Liu, J. Wang, O. Y. Yuen, M. P. Leung, Y. Shang, and F. Y. Kwong, “DMAP-Catalyzed Annulation Approach for Modular Assembly of Furan-Fused Chromenes,” Organic Letters 22, no. 24 (2020): 9444–9. doi:10.1021/acs.orglett.0c03374.
  • H. Chen, P. Li, R. Qin, H. Yan, G. Li, and H. Huang, “DMAP-Catalyzed One-Pot Synthesis of Quinazoline-2,4-Diones from 2-Aminobenzamides and Di-Tert-Butyl Dicarbonate,” ACS Omega 5, no. 16 (2020): 9614–23. doi:10.1021/acsomega.0c01104.
  • X. He, R. Li, P. Y. Choy, T. Liu, O. Y. Yuen, M. P. Leung, Y. Shang, and F. Y. Kwong, “Rapid Access of Alkynyl and Alkenyl Coumarins via a Dipyridinium Methylide and Propargylamine Cascade Reaction,” Organic Letters 22, no. 18 (2020): 7348–52. doi:10.1021/acs.orglett.0c02674.
  • C. Wang, X. He, X. Liu, and Y. Shang, “DMAP-Catalyzed Cyclization of Schiff Bases with α-Halo Ketones: Synthesis of 1,4-Benzoxazines,” Synthetic Communications 47, no. 9 (2017): 878–85. doi:10.1080/00397911.2017.1293107.
  • J. Xu, C. Yang, M. Wu, and Y. Xie, “Facile One-Pot Synthesis of Tricyclic/Polycyclic Lactones,” Heterocycles 73, no. 1 (2007): 393–401. doi:10.3987/COM-07-S(U)10.
  • R. Ramesh, M. Arivazhagan, J. G. Malecki, and A. Lalitha, “Improved One-Pot, Four-Component Strategy to Access Functionalized Dihydropyridines by Using 4-(N,N-Dimethylamino)Pyridine as a Catalyst,” Synlett 29, no. 14 (2018): 1897–901. doi:10.1055/s-0037-1609579.
  • K. Boudebbous, R. Boulcina, D. Harakat, T. Roisnel, and A. Debache, “New One Pot and Efficient Four-Components Reaction for Synthesis of 2,3-Dihydrothiophene Carbamate Derivatives,” Chemistry Select 7, no. 4 (2022): e202103894. doi:10.1002/slct.202103894.
  • G. W. Wang, and J. Gao, “Selective Formation of Spiro Dihydrofurans and Cyclopropanes through Unexpected Reaction of Aldehydes with 1,3-Dicarbonyl Compounds,” Organic Letters 11, no. 11 (2009): 2385–8. doi:10.1021/ol900451d.
  • P. P. De Castro, J. A. Dos Santos, M. M. De Siqueira, G. M. F. Batista, H. F. Dos Santos, and G. W. Amarante, “Quantum Chemical-Guided Steglich Rearrangement of Azlactones and Isoxazolones,” The Journal of Organic Chemistry 84, no. 19 (2019): 12573–82. doi:10.1021/acs.joc.9b02099.
  • V. J. Gandubert, and R. B. Lennox, “Assessment of 4-(Dimethylamino)Pyridine as a Capping Agent for Gold Nanoparticles,” Langmuir: The ACS Journal of Surfaces and Colloids 21, no. 14 (2005): 6532–9. doi:10.1021/la050195u.
  • X. L. Zhang, M. H. Wei, S. R. Sheng, and X. L. Liu, “One-Pot Synthesis of Novel N,N-Bis(Isoxazol-5-yl)Methyl Tertiary Arylamines via Sequential Diprop-3-Ynylation and 1,3-Dipolar Cycloaddition from Primary Amines,” Journal of Chemical Research 43, nos. 9–10 (2019): 407–11. doi:10.1177/1747519819868203.
  • N. Agrawal and P. Mishra, “The Synthetic and Therapeutic Expedition of Isoxazole and Its Analogs,” Medicinal Chemistry Research: An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents 27, no. 5 (2018): 1309–44. doi:10.1007/s00044-018-2152-6.
  • N. C. Desai, D. V. Vaja, S. B. Joshi, and V. M. Khedkar, “Synthesis and Molecular Docking Study of Pyrazole Clubbed Oxazole as Antibacterial Agents,” Research on Chemical Intermediates 47, no. 2 (2021): 573–87. doi:10.1007/s11164-020-04286-6.
  • H. Beyzaei, M. K. Deljoo, R. Aryan, B. Ghasemi, M. M. Zahedi, and M. Moghaddam‐Manesh, “Green Multicomponent Synthesis, Antimicrobial and Antioxidant Evaluation of Novel 5-Amino-Isoxazole-4-Carbonitriles,” Chemistry Central Journal 12, no. 1 (2018): 114. doi:10.1186/s13065-018-0488-0.
  • O. B. Bondarenko and N. V. Zyk, “The Main Directions and Recent Trends in the Synthesis and Use of Isoxazoles,” Chemistry of Heterocyclic Compounds 56, no. 6 (2020): 694–707. doi:10.1007/s10593-020-02718-0.
  • G. L. Karetnikov, D. A. Skvortsov, E. V. Lopatukhina, S. N. Nikolaeva, and O. B. Bondarenko, “Two-Stage Regioselective Access to Non-Symmetric 3,5-Diarylisoxazoles: Synthesis of Combretastatin A-4 Analogues,” Asian Journal of Organic Chemistry 10, no. 12 (2021): 3343–8. doi:10.1002/ajoc.202100551.
  • R. Qiu, G. Luo, X. Li, F. Zheng, H. Li, J. Zhang, Q. You, and H. Xiang, “Lipid Accumulation Inhibitory Activities of Novel Isoxazole-Based Chenodeoxycholic Acids: Design, Synthesis and Preliminary Mechanism Study,” Bioorganic Medicine and Chemistry Letters 28, no. 17 (2018): 2879–84. doi:10.1016/j.bmcl.2018.07.026.
  • F. Ghorbani, H. Kiyani, and S. A. Pourmousavi, “Facile and Expedient Synthesis of α,β‐Unsaturated Isoxazol‐5(4H)‐Ones under Mild Conditions,” Research on Chemical Intermediates 46, no. 1 (2020): 943–59. doi:10.1007/s11164-019-03999-7.
  • A. P. Chavan, R. R. Deshpande, N. A. Borade, A. Shinde, P. C. Mhaske, D. Sarkar, and V. D. Bobade, “Synthesis of New 1,3,4-Oxadiazole and Benzothiazolylthioether Derivatives of 4-Arylmethylidene-3-Substituted-Isoxazol-5(4H)-One as Potential Antimycobacterial Agents,” Medicinal Chemistry Research 28, no. 11 (2019): 1873–84. doi:10.1007/s00044-019-02420-7.
  • M. Kuchana, D. R. Bethapudi, R. K. Ediga, and Y. Sisapuram, “Synthesis, in-Vitro Antioxidant Activity and In-Silico Prediction of Drug-Likeness Properties of a Novel Compound: 4-(3,5-Di-Tert-Butyl-4-Hydroxybenzylidene)-3-Methylisoxazol-5(4H)-One,” Journal of Applied Pharmaceutical Science 9, no. 09 (2019): 105–10. doi:10.7324/JAPS.2019.90915.
  • C. V. R. Reddy and G. G. Reddy, “Water Mediated One‐Pot and Step‐Wise Syntheses of Indolylidine Isoxazoles and Their anti‐Cancer Activity and Molecular Modeling Studies,” Chemistry Africa 3, no. 1 (2020): 61–74. doi:10.1007/s42250-019-00101-x.
  • B. Manjunatha, Y. D. Bodke, S. k Jain, T. N. Lohith, and M. A. Sridhar, “Novel Isoxazolone Based Azo Dyes: Synthesis, Characterization, Computational, Solvatochromic UV–Vis Absorption and Biological Studies,” Journal of Molecular Structure 1244 (2021): 130933. doi:10.1016/j.molstruc.2021.130933.
  • A. K. Oraby, K. R. A. Abdellatif, M. A. Abdelgawad, K. M. Attia, L. N. Dawe, and P. E. Georghiou, “2,4-Disubstituted Phenylhydrazonopyrazolone and Isoxazolone Derivatives as Antibacterial Agents: Synthesis, Preliminary Biological Evaluation and Docking Studies,” Chemistry Select 3, no. 11 (2018): 3295–301. doi:10.1002/slct.201800174.
  • T. D. Bhatt, D. G. Gojiya, P. L. Kalavadiya, and H. S. Joshi, “Rapid, Greener and Ultrasound Irradiated One-Pot Synthesis of 4-(Substituted-1H-Pyrazol-4-yl)Methylene)-3-Isopropylisoxazol-5(4H)-Ones and Their In Vitro Anticancer Activity,” Chemistry Select 4, no. 37 (2019): 11125–9. doi:10.1002/slct.201902164.
  • T. Anwar, H. Nadeem, S. Sarwar, H. Naureen, S. Ahmed, A. Khan, and M. Arif, “Investigation of Antioxidant and Anti-Nociceptive Potential of Isoxazolone, Pyrazolone Derivatives, and Their Molecular Docking Studies,” Drug Development Research 81, no. 7 (2020): 893–903. doi:10.1002/ddr.21711.
  • S. Breuer, M. W. Chang, J. Yuan, and B. E. Torbett, “Identification of HIV-1 Inhibitors Targeting the Nucleocapsid Protein,” Journal of Medicinal Chemistry 55, no. 11 (2012): 4968–77. doi:10.1021/jm201442t.
  • M. Ali, U. Saleem, F. Anwar, M. Imran, H. Nadeem, B. Ahmad, T. Ali, Atta‐Ur‐Rehman, and T. Ismail, “Screening of Synthetic Isoxazolone Derivative Role in Alzheimer’s Disease: Computational and Pharmacological Approach,” Neurochemical Research 46 (2021): 905–20. doi:10.1007/s11064-021-03229-w.
  • S. Gulati, R. Singh, and S. Sangwan, “Fruit Juice Mediated Multicomponent Reaction for the Synthesis of Substituted Isoxazoles and Their In Vitro Bio‐Evaluation,” Scientific Reports 11, no. 1 (2021): 23563. doi:10.1038/s41598-021-03057-6.
  • M. Gao, J. Zhang, X. Zhang, D. Xu, Z. Hu, J. Yao, and Y. Wu, “Steric Group Design for Enhancement of Optical Nonlinearity in Isoxazolone-Based Crystals and Terahertz-Wave Generationm,” Crystal Growth and Design 21, no. 6 (2021): 3153–7. doi:10.1021/acs.cgd.1c00221.
  • M. Gao, X. Zhang, Y. Guo, J. Yao, G. Zhang, Z. Hu, and Y. Wu, “Rational Structure Design of Isoxazolone-Based Crystals with Large Second-Order Optical Nonlinearity,” CrystEngComm 22, no. 39 (2020): 6444–7. doi:10.1039/D0CE01100B.
  • J. R. Hemmer, Z. A. Page, K. D. Clark, F. Stricker, N. D. Dolinski, C. J. Hawker, and J. R. de Alaniz, “Controlling Dark Equilibria and Enhancing Donor-Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design ,” Journal of the American Chemical Society 140, no. 33 (2018): 10425–9. doi:10.1021/jacs.8b06067.
  • D. E. Nánási, A. Kunfi, A. Abrahám, P. J. Mayer, J. Mihály, G. F. Samu, E. Kiss, M. Mohai, and G. London, “Construction and Properties of Donor–Acceptor Stenhouse Adducts on Gold Surfaces,” Langmuir: The ACS Journal of Surfaces and Colloids 37, no. 10 (2021): 3057–66. doi:10.1021/acs.langmuir.0c03275.
  • S. E. Kiruthika, P. T. Perumal, C. Balachandran, and S. Ignacimuthu, “An Easy Protocol for the Domino Synthesis of Diversely Functionalized Spirocarbocycles and Their Biological Evaluation,” Journal of Chemical Sciences 126, no. 1 (2014): 177–85. doi:10.1007/s12039-013-0560-1.
  • I. Sharma, A. Saxena, C. K. Ojha, P. Pardasani, R. T. Pardasani, and T. Mukherjee, “A Comprehensive Approach to the Photochemical Synthesis of Bioactive Compounds by the Reaction of Oxazolidine, Thiazolidine and Pyrazolidine Derivatives with Indol-2,3-Diones,” Journal of Chemical Sciences 114, no. 6 (2002): 523–31. doi:114/06/0523-0531.
  • A. N. Vereshchagin, M. N. Elinson, Y. E. Anisina, K. A. Karpenko, A. S. Goloveshkin, S. G. Zlotin, and M. P. Egorov, “High Diastereoselective amine-catalyzed Knoevenagel–Michael-Cyclization-Ring-Opening Cascade Between Aldehydes, 3-Arylisoxazol-5(4H)-Ones and 3-Aminocyclohex-2-En-1-Ones,” Molecular Diversity 22, no. 3 (2018): 627–36. doi:10.1007/s11030-018-9817-4.
  • V. S. Moshkin, K. V. Martynov, and V. Y. Sosnovskikh, “Reinvestigation of the Reaction between Aromatic Aldehydes, 3-Phenyl-5-Isoxazolone and Sarcosine: Stabilized Azomethine Ylides as a Synthetic Equivalent of the Methylaminomethyl Anion,” Tetrahedron Letters 61, no. 16 (2020): 151770. doi:10.1016/j.tetlet.2020.151770.
  • T. Shimbayashi, G. Matsushita, A. Nanya, A. Eguchi, K. Okamoto, and K. Ohe, “Divergent Catalytic Approach from Cyclic Oxime Esters to Nitrogen-Containing Heterocycles with Group 9 Metal Catalysts,” ACS Catalysis 8, no. 9 (2018): 7773–80. doi:10.1021/acscatal.8b01646.
  • Y. M. Zhu, W. Zhang, H. Li, X. P. Xu, and S. J. Ji, “Palladium Catalyzed Ring Expansion Reaction of Isoxazolones with Isocyanides: Synthesis of 1,3-Oxazin-6-One Derivatives,” Advanced Synthesis and Catalysis 363, no. 3 (2021): 808–18. doi:10.1002/adsc.202001200.
  • P. Martínez-Pardo, A. Laviós, A. Sanz-Marco, C. Vila, J. R. Pedro, and G. Blay, “Enantioselective Synthesis of Functionalized Diazaspirocycles from 4-Benzylideneisoxazol-5(4H)-One Derivatives and Isocyanoacetate Esters,” Advanced Synthesis and Catalysis 362, no. 17 (2020): 3564–9. doi:10.1002/adsc.202000611.
  • Y. Wang, and D. M. Du, “Highly Diastereo- and Enantioselective Synthesis of Isoxazolone-Spirooxindoles via Squaramide-Catalyzed Cascade Michael/Michael Addition Reactions,” The Journal of Organic Chemistry 85, no. 23 (2020): 15325–36. doi:10.1021/acs.joc.0c02150.
  • C. Wentrup, J. Becker, and H. W. Winter, “Falling-Solid Flash Vacuum Pyrolysis: An Efficient Preparation of Arylacetylenes,” Angewandte Chemie (International ed. in English) 54, no. 19 (2015): 5702–4. doi:10.1002/anie.201412431.
  • A. A. G. Fernandes, M. L. Stivanin, and I. D. Jurberg, “RuCl3/PPh3-Catalyzed Direct Conversion of Isoxazol-5-Ones to 2,3-Disubstituted Pyridines,” Chemistry Select 4, no. 12 (2019): 3360–5. doi:10.1002/slct.201900761.
  • Z. H. Wang and D. H. Wang, “Cu-Catalyzed Synthesis of Benzoxazole with Phenol and Cyclic Oxime,” Organic Letters 24, no. 2 (2022): 782–5. doi:10.1021/acs.orglett.1c04322.
  • A. A. G. Fernandes, A. F. da Silva, C. Y. Okada, Jr., V. Suzukawa, R. A. Cormanich, and I. D. Jurberg, “General Platform for the Conversion of Isoxazol-5-Ones to 3,5-Disubstituted Isoxazoles via Nucleophilic Substitutions and Palladium Catalyzed Cross-Coupling Strategies,” European Journal of Organic Chemistry 2019, no. 19 (2019): 3022–34. doi:10.1002/ejoc.201900187.
  • S. Rieckhoff, W. Frey, and R. Peters, “Regio-, Diastereo- and Enantioselective Synthesis of Piperidines with Three Stereogenic Centers from Isoxazolinones by Palladium/Iridium Relay Catalysis,” European Journal of Organic Chemistry 2018, no. 15 (2018): 1797–805. doi:10.1002/ejoc.201800198.
  • N. Poomathi, S. Mayakrishnan, D. Muralidharan, R. Srinivasan, and P. T. Perumal, “Reaction of Isatins with 6-Amino Uracils and Isoxazoles: isatin Ring-Opening vs. annulations and Regioselective Synthesis of Isoxazole Fused Quinoline Scaffolds in Water,” Green Chemistry 17, no. 6 (2015): 3362–72. doi:10.1039/C5GC00006H.
  • D. Tang, Z. Iqbal, J. Sun, J. Ji, M. Yang, and Z. Yang, “Iodine-Catalyzed Synthesis of Sulfonyl Isoxazoles from Sodium Sulfinates and Isoxazol-5(4H)-Ones,” Tetrahedron Letters 62 (2021): 152685. doi:10.1016/j.tetlet.2020.152685.
  • E. E. Galenko, S. A. Linnik, O. V. Khoroshilova, M. S. Novikov, and A. F. Khlebnikov, “Isoxazole Strategy for the Synthesis of α-Aminopyrrole Derivatives,” The Journal of Organic Chemistry 84, no. 17 (2019): 11275–85. doi:10.1021/acs.joc.9b01634.
  • H. W. Liang, Z. Yang, K. Jiang, Y. Ye, and Y. Wei, “Atom-Economic Silver-Catalyzed Difunctionalization of the Isocyano Group with Cyclic Oximes: Towards Pyrimidinediones,” Angewandte Chemie (International ed. in English) 57, no. 20 (2018): 5720–4. doi:10.1002/anie.201801363.
  • E. E. Galenko, M. A. Kryukova, M. S. Novikov, and A. F. Khlebnikov, “An Isoxazole Strategy for the Synthesis of Fully Substituted Nicotinates,” The Journal of Organic Chemistry 86, no. 9 (2021): 6888–96. doi:10.1021/acs.joc.1c00286.
  • (a) Z. Ye, L. Bai, Y. Bai, Z. Gan, H. Zhou, T. Pan, Y. Yu, and J. Zhou, “High Diastereoselective Synthesis of Spiro-Isoxazolonechromans via Domino oxa-Michael/1,6-Addition Reactions of Orthohydroxyphenylsubstituted Para-Quinone Methides with Unsaturated Isoxazolones,” Tetrahedron 75, no. 5 (2019): 682–7. (b) I. D. Jurberg and H. M. L. Davies, “Rhodium- and Non-Metal-Catalyzed Approaches for the Conversion of Isoxazol-5-Ones to 2,3-Dihydro‐6H‐1,3-Oxazin-6-Ones,” Organic Letters 19 (2017): 5158−61. doi:10.1021/acs.orglett.7b02436; (c) A. F. da Silva, A. A. G. Fernandes, S. Thurow, M. L. Stivanin, and I. D. Jurberg, “Isoxazol-5-Ones as Strategic Building Blocks in Organic Synthesis,” Synthesis 50 (2018): 2473–89. doi:10.1055/s-0036-1589534; (d) A. Macchia, A. Eitzinger, J. F. Brière, M. Waser, and A. Massa, “Asymmetric Synthesis of Isoxazol-5-Ones and Isoxazolidin-5-Ones,” Synthesis 53, no. 01 (2021)107–22. doi:10.1055/s-0040-1706483; (e) I. D. Jurberg, “An Aminocatalyzed Stereoselective Strategy for the Formal α-Propargylation of Ketones,” Chemistry A European Journal 23 (2017): 9716–20. doi:10.1002/chem.201701433; (f) S. S. Qi, Z. H. Jiang, M. M. Chu, Y. F. Wang, X. Y. Chen, W. Z. Ju, and D. Q. Xu, “Regioselective Catalytic Asymmetric N-Alkylation of Isoxazol-5-Ones with Para-Quinone Methides,” Organic and Biomolecular Chemistry 18 (2020): 2398–404. doi:10.1039/d0ob00393j; (g) Y. Wang, C. Niu, D. H. Xie, and D. M. Du, “A Bifunctional Squaramide-Catalysed Enantioselective Vinylogous Michael Addition/Cyclization Cascade Reaction of 4-Unsaturated Isoxazol-5-Ones and α,α-Dicyanoalkenes,” Organic and Biomolecular Chemistry 19 (2021): 8572–7. doi:10.1039/d1ob01256h; (h) W. Hu, X. He, T. Zhou, Y. Zuo, S. Zhang, T. Yang, and Y. Shang, “Construction of Isoxazolone-Fused Phenanthridines via Rh-Catalyzed Cascade C–H Activation/Cyclization of 3-Arylisoxazolones with Cyclic 2-Diazo-1,3-Diketones,” Organic and Biomolecular Chemistry 19 (2021): 552–556. doi:10.1039/d0ob02310h; (i) A. F. da Silva, I. A. Leonarczyk, M. A. B. Ferreira, and I. D. Jurberg, “Diastereodivergent Aminocatalyzed Spirocyclization Strategies Using 4-Alkylideneisoxazol-5-Ones and Methyl Vinyl Ketones,” Organic Chemistry Frontiers 7 (2020): 3599–607. doi:10.1039/d0qo00779j; (j) T. Wan, C. Pi, Y. Wu, and X. Cui, “Rh(III)-Catalyzed [4 + 2] Annulation of 3‐Aryl-5-Isoxazolone with Maleimides or Maleic Ester,” Organic Letters 22 (2020): 6484−6488. doi:10.1021/acs.orglett.0c02283; (k) T. T. Wang, H. S. Jin, M. M. Cao, R. B. Wang, and L. M. Zhao, “Rh(III)-Catalyzed Regioselective Annulations of 3‐Arylisoxazolones and 3‐Aryl-1,4,2-Dioxazol-5-Ones with Propargyl Alcohols: Access to 4‐Arylisoquinolines and 4-Arylisoquinolones,” Organic Letters 23 (2021): 5952−7. doi:10.1021/acs.orglett.1c02049; (l) S. H. Wan, X. A. Li, Y. H. Liu, and S. T. Liu, “N-Allylation Versus C-Allylation of Intermediates from aza-Michael Adducts of Arylideneisoxazol-5-Ones,” Organic and Biomolecular Chemistry 18 (2020)9516: –25. doi:10.1039/d0ob01998d; (m) A. A. Esmaeili, R. Hosseinabadi, and A. Habibi, “An Efficient Synthesis of Highly Functionalized 4H-Pyrano[3,2-d]Isoxazoles via Isocyanide-Based Three-Component Reaction,” Synlett 21, no. 10 (2010): 1477–80. doi:10.1055/s-0029-1220072; (n) A. N. Vereshchagin, M. N. Elinson, A. D. Korshunov, Y. E. Anisina, R. A. Novikov, A. S. Goloveshkin, I. S. Bushmarinov, S. G. Zlotin, and M. P. Egorov, “Stereoselective Michael Halogenation Initiated Ring Closure (MHIRC) Synthesis of Spirocyclopropanes from Benzylidenemalononitriles and 3-Arylisoxazol-5(4H)-Ones,” Synlett 27, no. 17 (2016): 2489–93. doi:10.1055/s-0035-1562690; (o) M. L. Stivanin, M. Duarte, C. Sartori, N. M. R. Capreti, C. F. F. Angolini, and I. D. Jurberg, “An Aminocatalyzed Michael Addition/Iron-Mediated Decarboxylative Cyclization Sequence for the Preparation of 2,3,4,6-Tetrasubstituted Pyridines: Scope and Mechanistic Insights,” The Journal of Organic Chemistry 82 (2017): 10319−30. doi:10.1021/acs.joc.7b01789 doi:10.1016/j.tet.2018.12.064.
  • S. Farahi, N. Nowrouzi, and M. Irajzadeh, “Three-Component Synthesis of Isoxazolone Derivatives in the Presence of 4-(N,N-Dimethylamino)Pyridinium Acetate as a Protic Ionic Liquid,” Iranian Journal of Science and Technology, Transactions A: Science 42, no. 4 (2018): 1881–7. doi:10.1007/s40995-017-0453-0.
  • H. Kiyani and F. Ghorbani, “Boric Acid-Catalyzed Multi-Component Reaction for Efficient Synthesis of 4H-Isoxazol-5-Ones in Aqueous Medium,” Research on Chemical Intermediates 41, no. 5 (2015): 2653–64. doi:10.1007/s11164-013-1411-x.
  • A. B. Barkule, Y. U. Gadkari, and V. N. Telvekar, “One-Pot Multicomponent Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-Ones Using Guanidine Hydrochloride as the Catalyst Under Aqueous Conditions,” Polycyclic Aromatic Compounds (2021): 1–12. doi:10.1080/10406638.2021.1959353.
  • H. Kiyani and A. Mosallanezhad, “Sulfanilic Acid-Catalyzed Synthesis of 4-Arylidene-3-Substituted Isoxazole-5(4H)-Ones,” Current Organic Synthesis 15, no. 5 (2018): 715–22. doi:10.2174/1570179415666180423150259.
  • N. Reihani and H. Kiyani, “Three-Component Synthesis of 4-Arylidene-3-Alkylisoxazol-5(4H)-Ones in the Presence of Potassium 2,5-Dioxoimidazolidin-1-Ide,” Current Organic Chemistry 25, no. 8 (2021): 950–62. doi:10.2174/1385272825666210212120517.
  • F. K. Damghani, H. Kiyani, and S. A. Pourmousavi, “Green Three-Component Synthesis of Merocyanin Dyes Based on 4-Arylideneisoxazol-5(4H)-Ones,” Current Green Chemistry 7, no. 2 (2020): 217–25. doi:10.2174/2213346107666200122093906.
  • S. R. Deshmukh, A. S. Nalkar, and S. R. Thopate, “Pyruvic Acid-Catalyzed One-Pot Three-Component Green Synthesis of Isoxazoles in Aqueous Medium: A Comparable Study of Conventional Heating Versus Ultrasonication,” Journal of Chemical Sciences 134, no. 1 (2022): 15. doi:10.1007/s12039-021-02016-y.
  • M. Shanshak, S. Budagumpi, J. G. Małecki, and R. S. Keri, “Green Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones Using ZnO@Fe3O4 Core–Shell Nanocatalyst in Water,” Applied Organometallic Chemistry 34, no. 4 (2020): e5544. doi:10.1002/aoc.5544.
  • S. L. Nakkalwar, S. B. Patwari, M. M. Patel, and V. B. Jadhav, “Iodine Catalyzed Highly Efficient One Pot Three Component Synthesis of 4-Arylidene-3-Methylisoxazol-5(4H)-One in Aqueous,” Current Green Chemistry 5, no. 2 (2018): 122–8. doi:10.2174/2213346105666180711151320.
  • S. P. Vaidya, G. Shridhar, S. Ladage, and L. Ravishankar, “A Facile Synthesis of Isoxazolone Derivatives Catalyzed by Cerium Chloride Heptahydrate in Ethyl Lactate as a Solvent: A Green Methodology,” Current Green Chemistry 3, no. 2 (2016): 160–7. doi:10.2174/2213346103666160526130509.
  • B. M. Patil, S. K. Shinde, A. A. Jagdale, S. D. Jadhav, and S. S. Patil, “Fruit Extract of Averrhoa Bilimbi: A Green Neoteric Micellar Medium for Isoxazole and Biginelli‐like Synthesis,” Research on Chemical Intermediates 47, no. 10 (2021): 4369–98. doi:10.1007/s11164-021-04539-y.
  • B. B. Popatkar, A. A. Mane, and G. A. Meshram, “Tomato Fruit Extract: An Environmentally Benign Catalytic Medium for the Synthesis of Isoxazoles Derivatives,” Indian Journal of Chemistry 60B (2021): 1362–7. doi:123456789/58323.
  • H. K. Kadam, K. Salkar, A. P. Naik, M. M. Naik, L. N. Salgaonkar, L. Charya, K. C. Pinto, V. K. Mandrekar, and T. Vaz, “Silica Supported Synthesis and Quorum Quenching Ability of Isoxazolones against Both Gram Positive and Gram-Negative Bacterial Pathogens,” Chemistry Select 6, no. 42 (2021): 11718–28. doi:10.1002/slct.202101798.
  • G. D. Shirole, A. S. Tambe, and S. N. Shelke, “Ionic Liquid Catalyzed One Pot Green Synthesis of Isoxazolone Derivatives via Multicomponent Reaction,” Indian Journal of Chemistry 59B (2020): 459–64. doi:123456789/54405.
  • S. A. Pourmousavi, H. R. Fattahi, F. Ghorbani, A. Kanaani, and D. Ajloo, “A Green and Efficient Synthesis of Isoxazol‐5(4H)‐One Derivatives in Water and a DFT Study,” Journal of the Iranian Chemical Society 15, no. 2 (2018): 455–69. doi:10.1007/s13738-017-1246-2.
  • H. Kiyani, A. Kanaani, D. Ajloo, F. Ghorbani, and M. Vakili, “N-Bromosuccinimide (NBS)-Promoted, Three-Component Synthesis of α,β-Unsaturated Isoxazol-5(4H)-Ones, and Spectroscopic Investigation and Computational Study of 3-Methyl-4-(Thiophen-2-Ylmethylene)Isoxazol-5(4H)-One,” Research on Chemical Intermediates 41, no. 10 (2015): 7739–73. doi:10.1007/s11164-014-1857-5.
  • J. Safari, M. Ahmadzadeh, and Z. Zarnegar, “Ultrasound-Assisted Method for the Synthesis of 3-Methyl-4-Arylmethylene Isoxazole-5(4H)-Ones Catalyzed by Imidazole in Aqueous Media,” Organic Chemistry Research 2, no. 2 (2016): 134–9.
  • R. H. Vekariya and H. Patel, “Facile, Eco-Friendly and One-Pot Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones Using Starch Solution as a Reaction Media,” Indian Journal of Chemistry 56B (2017): 890–6. doi:123456789/42584.
  • P. Kour, M. Ahuja, P. Sharma, A. Kumar, and A. Kumar, “An Improved Protocol for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones through L-Valine-Mediated Domino Three-Component Strategy,” Journal of Chemical Sciences 132, no. 1 (2020): 108. doi:10.1007/s12039-020-01801-5.
  • R. S. Ghogare, K. Patankar-Jain, and S. A. H. Momin, “A Simple and Efficient Protocol for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones Catalyzed by Succinic Acid Using Water as Green Reaction Medium,” Letters in Organic Chemistry 18, no. 2 (2021): 83–7. doi:10.2174/1570178617999200721011300.
  • H. Kiyani and F. Ghorbani, “Efficient Tandem Synthesis of a Variety of Pyran-Annulated Heterocycles, 3,4-Disubstituted Isoxazol-5(4H)-Ones, and α,β-Unsaturated Nitriles Catalyzed by Potassium Hydrogen Phthalate in Water,” Research on Chemical Intermediates 41, no. 10 (2015): 7847–82. doi:10.1007/s11164-014-1863-7.
  • H. Kiyani, M. Jabbari, and A. Mosallanezhad, “Efficient Three Component Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones in Green Media,” Jordan Journal of Chemistry 9, no. 4 (2014): 279–89. doi:10.12816/0025980.
  • H. Kiyani, H. Darbandi, A. Mosallanezhad, and F. Ghorbani, “2-Hydroxy-5-Sulfobenzoic Acid: An Efficient Organocatalyst for the Three-Component Synthesis of 1-Amidoalkyl-2-Naphthols and 3,4-Disubstituted Isoxazol-5(4H)-Ones,” Research on Chemical Intermediates 41, no. 10 (2015): 7561–79. doi:10.1007/s11164-014-1844-x.
  • H. Kiyani, and F. Ghorbani, “Potassium Phthalimide as Efficient Basic Organocatalyst for the Synthesis of 3,4- Disubstituted Isoxazol-5(4H)-Ones in Aqueous Medium,” Journal of Saudi Chemical Society 21 (2017): S112–S9. doi:10.1016/j.jscs.2013.11.002.
  • A. Mosallanezhad, and H. Kiyani, “Green Synthesis of 3-Substituted-4-Arylmethylideneisoxazol-5(4H)-One Derivatives Catalyzed by Salicylic Acid,” Current Organocatalysis 6, no. 1 (2019): 28–35. doi:10.2174/2213337206666190214161332.
  • A. Mosallanezhad and H. Kiyani, “KI-Mediated Three-Component Reaction of Hydroxylamine Hydrochloride with Aryl/Heteroaryl Aldehydes and Two β-Oxoesters,” Orbital: Electronic Journal of Chemistry 10, no. 2 (2018): 133–9. doi:10.17807/orbital.v10i2.1134.
  • S. K. Asadi, G. Aleaba, N. Daneshvar, and F. Shirini, “Sustainable and Green Synthesis of 3-Methyl-4-Arylmethylene-Isoxazole-5(4H)-One Derivatives Under Mild Conditions Using a Novel Phosphoric Acid-Based Molten Salt as Catalyst,” Sustainable Chemistry and Pharmacy 21 (2021): 100442. doi:10.1016/j.scp.2021.100442.
  • P. Kulkarni, “An Efficient Solvent-Free Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones Using Microwave Irradiation,” Journal of the Indian Chemical Society 98, no. 1 (2021): 100013. doi:10.1016/j.jics.2021.100013.
  • H. Kiyani and F. Ghorbani, “Expeditious Green Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones Catalyzed by nano-MgO,” Research on Chemical Intermediates 42, no. 9 (2016): 6831–44. doi:10.1007/s11164-016-2498-7.
  • H. Kiyani and H. A. Samimi, “Nickel-Catalyzed One-Pot, Three-Component Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones in Aqueous Medium,” Chiang Mai Journal of Science 44, no. 3 (2017): 1011–21.
  • S. B. Kasar and S. R. Thopate, “Ultrasonically Assisted Efficient and Green Protocol for the Synthesis of 4H-Isoxazol-5-Ones Using Itaconic Acid as a Homogeneous and Reusable Organocatalyst,” Current Organocatalysis 6, no. 3 (2019): 231–7. doi:10.2174/2213337206666190411115402.
  • R. Laroum and A. Debache, “New Eco-Friendly Procedure for the Synthesis of 4-Arylmethylene-Isoxazol-5(4H)-Ones Catalyzed by Pyridinium p-Toluenesulfonate (PPTS) in Aqueous Medium,” Synthetic Communications 48, no. 14 (2018): 1876–82. doi:10.1080/00397911.2018.147344.
  • H. Atharifar, A. Keivanloo, and B. Maleki, “Greener Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones in a Deep Eutectic Solvent,” Organic Preparations and Procedures International 52, no. 6 (2020): 517–23. doi:10.1080/00304948.2020.1799672.
  • M. Parveen, A. Aslam, A. Ahmad, M. Alam, M. R. Silva, and P. S. P. Silva, “A Facile and Convenient Route for the Stereoselective Synthesis of Z-Isoxazol-5(4H)-Ones Derivatives Catalysed by Sodium Acetate: Synthesis, Multispectroscopic Properties, Crystal Structure with DFT Calculations, DNA-Binding Studies and Molecular Docking Studies,” Journal of Molecular Structure 1200 (2020): 127067. doi:10.1016/j.molstruc.2019.127067.
  • N. S. Kaminwar, S. U. Tekale, S. L. Nakkalwar, and R. P. Pawar, “Sulfated Tin Oxide: A Convenient Heterogeneous Catalyst for the Synthesis of 4-Arylmethylidene-3-Substituted-Isoxazol-5(4H)-Ones,” Letters in Organic Chemistry 18, no. 12 (2021): 945–9. doi:10.2174/1570178618666210729114845.
  • Z. Faramarzi, and H. Kiyani, “Organocatalyzed Three-Component Synthesis of Isoxazol-5(4H)-Ones under Aqueous Conditions,” Heterocycles 102, no. 9 (2021): 1779–90. doi:10.3987/COM-21-14488.
  • (a) K. Ablajan, and H. Xiamuxi, “Efficient One-Pot Synthesis of β-Unsaturated Isoxazol-5-Ones and Pyrazol-5-Ones under Ultrasonic Irradiation,” Synthetic Communications 42, no. 8 (2012): 1128–36, (b) Q. Liu, and X. Hou, “One-Pot Three-Component Synthesis of 3-Methyl-4-Arylmethylene- Isoxazol-5(4H)- Ones Catalyzed by Sodium Sulfide,” Phosphorus, Sulfur, and Silicon and the Related Elements 187, no. 4 (2012): 448–53. doi:10.1080/10426507.2011.621003 (c) K. Ablajan and H. Xiamuxi, “The Convenient Synthesis of 4-Rylmethylidene-4,5-Dihydro-3-Phenylisoxazol-5-Ones,” Chinese Chemical Letters 22 (2011): 151–4. doi:10.1016/j.cclet.2010.09.023; (d) P. Setia, R. Bharti, and R. Sharma, “Various Synthetic Pathways for the Synthesis of 3,4-Disubstituted Isoxazole by One Pot Multicomponent Reaction,” Orbital: Electronic Journal Chemistry 12, no. 4 (2020): 267–75. doi:10.17807/orbital.v12i4.1549; (e) G. H. C. Oliveira, L. M. Ramos, R. K. C. de Paiva, S. T. A. Passos, M. M. Simões, F. Machado, J. R. Correa, and B. A. D. Neto, “Synthetic Enzyme-Catalyzed Multicomponent Reaction for Isoxazol-5(4H)-One Syntheses, Their Properties and Biological Application: Why Should One Study Mechanisms?,” Organic and Biomolecular Chemistry 19 (2021): 1514–31. doi:10.1039/d0ob02114h; (f) D. J. Rao, K. Nagaraju, and S. Maddila, “Microwave Irradiated Mild, Rapid, One-Pot and Multi-Component Synthesis of Isoxazole-5(4H)-Ones,” Chemical Data Collections 32 (2021): 100669. doi:10.1016/j.cdc.2021.100669; (g) N. T. Hatvate, and S. M. Ghodse, “One-Pot Three-Component Synthesis of Isoxazole Using ZSM-5 as a Heterogeneous Catalyst,” Synthetic Communications 50, no. 23 (2020): 3676–83. doi:10.1080/00397911.2020.1815786; (h) N. Ameur, G. Ferouani, Z. Belkadi, R. Bachir, J. J. Calvino, and A. Hakkoum, “A Novel Approach for the Preparation of Silver Nanoparticles Supported on Titanate Nanotubes and Bentonite-Application in the Synthesis of Heterocyclic Compound Derivatives,” Material Research Express 6 (2019): 125051. doi:10.1088/2053-1591/ab5734; (i) M. G. Dekamin and S. Z. Peyman, “Phthalimide-N-Oxyl Salts: Efficient Organocatalysts for Facile Synthesis of (Z)-3-Methyl-4-(Arylmethylene)-Isoxazole-5(4H)-One Derivatives in Water,” Monatshefte Für Chemie-Chemical Monthly 147 (2016): 445–50. doi:10.1007/s00706-015-1565-x; (j) M. Kalhor, S. M. Sajjadi, and A. Dadras, “Cu/TCH-pr@SBA-15 Nano-Composite: A New Organometallic Catalyst for Facile Three-Component Synthesis of 4-Arylidene-Isoxazolidinones,” RSC Advances 10 (2020)27439–46. doi:10.1039/d0ra01314e; (k) V. R. Kadu and S. S. Gholap, “An Expeditious Synthesis of 3-Methyl-4-Arylmethylene-Isoxazole-5(4H)-Ones Using Aqueous Extract of Acacia Concinna Pods as a Natural Surfactant Catalyst,” Indian Journal of Heterocyclic Chemistry 29 (2019): 319–26. l) G. Ferouani, N. Ameur, and R. Bachir, “Preparation and Characterization of Supported Bimetallic Gold–Iron Nanoparticles, and Its Potential for Heterogeneous Catalysis,” Research on Chemical Intermediates 46 (2020): 1373–87. doi:10.1007/s11164-019-04039-0; (m) K. Hiba, S. Prathapan, and K. Sreekumar, “Amine Functionalized Dendronized Polymer as a Homogeneous Base Catalyst for the Synthesis of Polyhydroquinolines and 4‐Arylidene‐3‐Methylisoxazol‐5(4H)‐Ones,” Catalysis Letters (2021). doi:10.1007/s10562-021-03829-9 doi:10.1080/00397911.2010.535949.
  • (a) T. Kitanosono, K. Masuda, P. Xu, and S. Kobayashi, “Catalytic Organic Reactions in Water toward Sustainable Society,” Chemical Reviews 118, no. 2 (2018): 679–746. doi:10.1021/acs.chemrev.7b00417; (b) S. Kamalifar and H. Kiyani, “Facile and Efficient Synthesis of 9-Aryl-1,8-Dioxo-Octahydroxanthenes Catalyzed by Sulfacetamide,” Polycyclic Aromatic Compounds (2021). doi:10.1080/1040663; (c) H. Kiyani, M. Tazari, and F. Ghorbani, “Expeditious and Green Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Catalyzed by nano-MgO,” Letters in Organic Chemistry 15 (2018): 523–9. doi:10.2174/1570178614666170710094547; (d) H. Kiyani, “Recent Advances in Three-Component Cyclocondensation of Dimedone with Aldehydes and Malononitrile for Construction of Tetrahydrobenzo[b]Pyrans Using Organocatalysts,” Current Organic Synthesis 15 (2018): 1043–72. doi:10.2174/1570179415666181031124459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.