123
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Structural, Spectroscopic, Cytotoxicity and Molecular Docking Studies of Charge Transfer Salt: 4-Aminiumantipyrine Salicylate

, , , , , , & show all
Pages 3159-3174 | Received 13 Jan 2022, Accepted 04 Apr 2022, Published online: 21 Apr 2022

References

  • S. Ranjan, R. Devarapalli, S. Kundu, V. R. Vangala, A. Ghosh, and C. M. Reddy, “Three New Hydrochlorothiazide Cocrystals: structural Analyses and Solubility Studies,” Journal of Molecular Structure 1133 (2017): 405–10. doi:10.1016/j.molstruc.2016.12.019.
  • X. Y. Hu, T. X. Xiao, C. Lin, F. H. Huang, and L. Y. Wang, “Dynamic Supramolecular Complexes Constructed by Orthogonal Self-Assembly,” Accounts of Chemical Research 47, no. 7 (2014): 2041–51. doi:10.1021/ar5000709.
  • V. Siva, A. Chitra Devi, S. Thangarasu, T. M. Viswanathan, S. Athimoolam, and S. A. Bahadur, “Design, Structural, DFT, Molecular Docking Studies and Biological Evaluation of 4-Aminiumantipyrine Dihydrogenphosphate Monohydrate,” Journal of Molecular Structure 1250 (2022): 131866. doi:10.1016/j.molstruc.2021.131866.
  • N. Raman, J. Dhaveethu Raja, and A. Sakthivel, “Synthesis, Spectral Characterization of Schiff Base Transition Metal Complexes: DNA Cleavage and Antimicrobial Activity Studies,” Journal of Chemical Sciences 119, no. 4 (2007): 303–10. doi:10.1007/s12039-007-0041-5.
  • M. S. Alam, and D. Lee, “Physicochemical Analyses of a Bioactive 4-Aminoantipyrine analogue -Synthesis, Crystal Structure, Solid State Interactions, Antibacterial, Conformational and Docking Studies,” EXCLI Journal 15 (2016): 614–29.
  • M. S. Alam, and D. U. Lee, “Synthesis, Molecular Structure and Antioxidant Activity of (E)- 4-[Benzylideneamino]-1,5-Dimethyl-2-Phenyl-1H-Pyrazol-3(2H)-One, aSchiff Base Derivative of Antipyrine,” Journal of Chemical Crystallography 42, no. 2 (2012): 93–102. doi:10.1007/s10870-011-0209-1.
  • B. S. Kumari, G. Rijulal, and K. Mohanan, “Microwave Assisted Synthesis; Spectroscopic, Thermal and Biological Studies of Some Lanthanide (III) Chloride Complexes with a Heterocyclic Schiff Base,” Synthesis and Reactivity in Inorganic and Metal-Organic Nano-Metal Chemistry 39, no. 1 (2009): 24–30. doi:10.1080/15533170802679550.
  • P. Deshmukh, P. K. Soni, A. Kankoriya, K. Anand, and H. R. Dixit, “4- aminoantipyrine: A Significant Tool for the Synthesis of Biologically Active Schiff Bases and Metal Complexes,” International Journal of Pharmaceutical Sciences Review and Research 34, no. 1 (2015): 162–70.
  • A. Sahu, R. M. Srinivasa, and K. N. Venugopala, “Synthesis, Characterization and Determination of Partition Coefficient of Some Hydrazide Derivatives for Their Antimicrobial Activity,” Asian Journal of Chemistry 19 (2007): 73–8.
  • G. Pallavi, K. Dinesh, and C. Sulekh, “Schiff Base Ligands and Their Transition Metal Complexes as Antimicrobial Agents,” Journal of Chemical Biological and Physical Sciences 4 (2014): 1946–64.
  • M. Gümüş, S. N. Babacan, Y. Demir, Y. Sert, İ. Koca, and İ. Gülçin, “Discovery of Sulfadrug–Pyrrole Conjugates as Carbonic Anhydrase and Acetylcholinesterase Inhibitors,” Archiv Der Pharmazie 355 (2022): e2100242. doi:10.1002/ardp.202100242
  • M. S. More, P. G. Joshi, Y. K. Mishra, and P. K. Khanna, “Metal Complexes Driven from Schiff Bases and Semicarbazones for Biomedical and Allied Applications: A Review,” Materials Today. Chemistry 14 (2019): 100195. doi:10.1016/j.mtchem.2019.100195.
  • M. Imran, J. Iqbal, and N. Ijaz, “In Vitrocentibacterial Studies of Ciproflaacin-Imines and Their Complexes with Cu(II), Ni(II), Co(II), and Zn(II),” Turkish Journal of Biology 31, no. 2 (2007): 67–72.
  • E. G. Bowes, G. M. Lee, C. M. Vogels, A. D. Stephen, and A. Westcott, “Palladium Salicyladimine Complexs Derived from 2,3–Dihydroybenzaldelyde,” Inorganica Chimica Acta 377, no. 1 (2011): 84–90. doi:10.1016/j.ica.2011.07.051.
  • M. Andruh, “The Exceptionally Rich Coordination Chemistry Generated by Schiff –Base Ligands Derived from o-Vanillin,” Dalton Transactions (Cambridge, England: 2003) 44, no. 38 (2015): 16633–966. doi:10.1039/C5DT02661J.
  • G. H. Elgemeie, M. A. Abu-Zaied, and S. A. Loutfy, “4- Aminoantipyrine in Carbohydrate Research: Design, Synthesis and Anticancer Activity of Thioglycosides of a Novel Class of 4-Aminoantipyrines and Their Corresponding Pyrazolopyrimidine and Pyrazolopyridine Thioglycosides,” Tetrahedron 73, no. 40 (2017): 5853–61. doi:10.1016/j.tet.2017.08.024.
  • R. M. Issa, A. M. Khedr, and H. F. Rizk, “UV–Vis, IR and 1H NMR Spectroscopic Studies of Some Schiff Bases Derivatives of 4-Aminoantipyrine,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62, no. 1–3 (2005): 621–9. doi:10.1016/j.saa.2005.01.026.
  • C. J. Dhanaraj, and S. S. Salin Raj, “Synthesis, Characterization and Biological Studies of Schiff Base Metal Complexes Derived from 4-Aminoantipyrine, Acetamide and p-Phenylenediamine,” Inorganic Chemistry Communications 119 (2020): 108087. doi:10.1016/j.inoche.2020.108087.
  • K. Sakthivel, B. Jeyasubramanian, J. Thangagiri, and D. Raja, “Recent Advances in Schiff Base Metal Complexes Derived from 4-Aminoantipyrine Derivatives and Their Potential Applications,” Journal of Molecular Structure 1222 (2020): 128885. doi:10.1016/j.molstruc.2020.128885.
  • M. Sayed Alam, J. H. Choi, and D. U. Lee, “Synthesis of Novel Schiff Base Analogues of 4-amino-1,5-dimethyl-2-Phenylpyrazol-3-One and Their Evaluation for Antioxidant and Anti-inflammatory Activity,” Bioorganic & Medicinal Chemistry 20, no. 13 (2012): 4103–8. doi:10.1016/j.bmc.2012.04.058.
  • A. Chitra Devi, V. Siva, S. Thangarasu, S. Athimoolam, and S. Asath Bahadur, “Supramolecular Architecture, Thermal, Quantum Chemical Analysis and in Vitro Biological Properties on Sulfate Salt of 4-Aminoantipyrine,” Journal of Molecular Structure 1245 (2021): 131033. 2021.131033. doi:10.1016/j.molstruc.
  • A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–52. doi:10.1063/1.464913.
  • R. G. Parr, and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, 2010).
  • R. Dennington, T. Keith, and J. Millam, Gauss View Version 5.0.8 (Semichem Inc., Shawnee Mission, KS, 2003).
  • O. Trott, and A. J. Olson, “AutoDock Vina: improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61. doi:10.1002/jcc.21334.
  • B. L. Narayana, D. Pran Kishore, C. Balakumar, K. V. Rao, R. Kaur, A. R. Rao, J. N. Murthy, and M. Ravikumar, “Molecular Modeling Evaluation of Non-Steroidal Aromatase Inhibitors,” Chemical Biology & Drug Design 79, no. 5 (2012): 674–82. doi:10.1111/j.1747-0285.2011.01277.x.
  • A. Paul, and S. Paul, “The Breast Cancer Susceptibility Genes (BRCA) in Breast and Ovarian Cancers,” Frontiers in Bioscience (Landmark Edition) 19, no. 4 (2014): 605–18. doi:10.2741/4230.
  • A. Chitradevi, S. Athimoolam, B. Sridhar, and S. A. Bahadur, “1,5-Dimethyl-3-oxo-2-phenyl-2,3-di-hy-dro-1H-Pyrazol-4-Aminium 2-Hydroxy-Benzoate,” Acta Crystallographica. Section E, Structure Reports Online 65, no. Pt 12 (2009): o3041–o3042. doi:10.1107/S1600536809045760.
  • V. Siva, S. Suresh Kumar, M. Suresh, M. Raja, S. Athimoolam, and S. Asath Bahadur, “NH⋯O Hydrogen Bonded Novel Nonlinear Optical Semiorganic Crystal (4-Methoxyanilinium Trifluoroacetate) Studied through Theoretical and Experimental Methods,” Journal of Molecular Structure 1133 (2017): 163–71. doi:10.1016/j.molstruc.2016.11.088.
  • M. Suresh, V. Siva, S. Asath Bahadur, and S. Athimoolam, “Structural Elucidation, Hydrogen Bonding Motifs and Solid-State Properties of p-Toluenesulfonate Salt of β-Alaninine for Optoelectronic Device Application,” Journal of Molecular Structure 1221 (2020): 128820. doi:10.1016/j.molstruc.2020.128820.
  • V. Siva, S. S. Kumar, A. Shameem, M. Raja, S. Athimoolam, and S. A. Bahadur, “Structural, Spectral, Quantum Chemical and Thermal Studies on a New NLO Crystal: guanidinium Cinnamate,” Journal of Materials Science: Materials in Electronics 28, no. 17 (2017): 12484–96. doi:10.1007/s10854-017-7070-8.
  • M. T. Elakkiya, S. S. Kumar, M. Sathiyendran, A. Harshavardhini, and K. Anitha, “Supramolecular Self-Assembly of a Novel 2-Aminopyrazinium Hydrogen Tartrate Single Crystal through Hydrogen Bonds: experimental Analyses and Theoretical Investigations,” Journal of Molecular Structure 1206 (2020): 127684. doi:10.1016/j.molstruc.2020.127684.
  • G. Sivaraj, N. Jayamani, and V. Siva, “Structural, Spectroscopic, Physical Properties and Quantum Chemical Investigation on Bromide Salt of 4-Dimethylaminopyridine NLO Material for Optoelectronic Applications,” Journal of Molecular Structure 1216 (2020): 128242. doi:10.1016/j.molstruc.2020.128242.
  • S. C. Jeyaseelan, R. Premkumar, K. Kaviyarasu, and A. M. Franklin Benial, “Spectroscopic, Quantum Chemical, Molecular Docking and in Vitro Anticancer Activity Studies on 5-Methoxyindole-3-Carboxaldehyde,” Journal of Molecular Structure 1197 (2019): 134–46. doi:10.1016/j.molstruc.2019.07.042.
  • A. Abdulridha, M. A. Albo Hay Allah, S. Q. Makki, Y. Sert, H. Edan Salman, and A. A. Balakit, “Corrosion Inhibition of Carbon Steel in 1M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690. doi:10.1016/j.molliq.2020.113690.
  • A. A. Balakit, S. Q. Makki, Y. Sert, F. Ucun, M. B. Alshammari, P. Thordarson, and G. A. El-Hit, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32, no. 10 (2020): 519–26. doi:10.1080/10610278.2020.1808217.
  • S. Premkumar, A. Jawahar, T. Mathavan, M. Kumara Dhas, and A. Milton Franklin Benial, “Vibrational Spectroscopic and DFT Calculation Studies of 2-Amino-7-Bromo-5-Oxo-[1]Benzopyrano [2,3-b]Pyridine-3 Carbonitrile,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 138 (2015): 252–63. doi:10.1016/j.saa.2014.11.029.
  • L. M. Novena, S. Athimoolam, R. Anitha, and S. Asath Bahadur, “Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Spectral and Quantum Chemical Studies of Pharmaceutical Cocrystals of a Bronchodilator Drug (Theophylline),” Journal of Molecular Structure 1249 (2022): 131585. doi:10.1016/j.molstruc.2021.131585.
  • A. Anandhan, C. Sivasankari, M. Saravanabhavan, V. Siva, and K. Senthil, “Synthesis, Crystal Structure, Spectroscopic Investigations, Physicochemical Properties of Third-Order NLO Single Crystal for Optical Applications,” Journal of Molecular Structure 1203 (2020): 127400. doi:10.1016/j.molstruc.2019.127400.
  • F. Helen, G. Kanchana, M. Thenmozhi, and V. Siva, “Structural Investigation, Thermal, Electrical and Optical Properties of NLO Active Single Crystal for Optoelectronic Device Applications,” Journal of Materials Science: Materials in Electronics 31, no. 20 (2020): 17158–72. doi:10.1007/s10854-020-04248-z.
  • V. Siva, S. A. Bahadur, A. Shameem, S. Athimoolam, K. U. Lakshmi, and G. Vinitha, “Synthesis, Structural, Vibrational, Thermal, Dielectric and Optical Properties of Third Order Nonlinear Optical Single Crystal for Optical Power Limiting Applications,” Journal of Molecular Structure 1191 (2019): 110–7. doi:10.1016/j.molstruc.2019.04.091.
  • S. Baranwal, and S. K. Alahari, “Molecular Mechanisms Controlling E-Cadherin Expression in Breast Cancer,” Biochemical and Biophysical Research Communications 384, no. 1 (2009): 6–11. doi:10.1016/j.bbrc.2009.04.051.
  • E. Lee, and D. H. Lee, “Emerging Roles of Protein Disulfide Isomerase in Cancer,” BMB Reports 50, no. 8 (2017): 401–10. doi:10.5483/bmbrep.2017.50.8.107.
  • M. J. Duffy, N. C. Synnott, and J. Crown, “Mutant p53 in Breast Cancer: potential as a Therapeutic Target and Biomarker,” Breast Cancer Research and Treatment 170, no. 2 (2018): 213–9. doi:10.1007/s10549-018-4753-7.
  • R. P. Kaur, K. Vasudeva, R. Kumar, and A. Munshi, “Role of p53 Gene in Breast Cancer: focus on Mutation Spectrum and Therapeutic Strategies,” Current Pharmaceutical Design 24, no. 30 (2018): 3566–75. doi:10.2174/1381612824666180926095709.
  • O. Nyormoi, Z. Wang, D. Doan, M. Ruiz, D. McConkey, and M. Bar-Eli, “Transcription Factor AP-2alpha Is Preferentially Cleaved by Caspase 6 and Degraded by Proteasome During Tumor Necrosis Factor Alpha-Induced Apoptosis in Breast Cancer Cells,” Molecular and Cellular Biology 21, no. 15 (2001): 4856–67. doi:10.1128/MCB.21.15.4856-4867.2001.
  • Y. Yao, Q. Shi, B. Chen, Q. Wang, X. Li, L. Li, Y. Huang, J. Ji, and P. Shen, “Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages,” The Journal of Biological Chemistry 291, no. 33 (2016): 17450–66. doi:10.1074/jbc.M116.717868.
  • D. Ryan, S. Carberry, A. C. Murphy, A. U. Lindner, J. Fay, S. Hector, N. McCawley, O. Bacon, C. G. Concannon, E. W. Kay, et al, “Calnexin, an ER Stress-Induced Protein, is a Prognostic Marker and Potential Therapeutic Target in Colorectal Cancer,” Journal of Translational Medicine 14, no. 1 (2016): 196. doi:10.1186/s12967-016-0948-z.
  • V. Siva, A. Murugan, A. Shameem, M. Uma Priya, S. Thangarasu, S. Athimoolam, and S. Asath Bahadur, “Design and Supramolecular Architecture of Stepped Molecular Aggregation in Monochloroacetate Salt of 2-Aminopyridine: Its Bacterial and Cancer Inhibitory Properties,” Journal of Molecular Structure 1250 (2022): 131888. doi:10.1016/j.molstruc.2021.131888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.