442
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

N-(Phenylsulfonyl)Benzenesulfonamide: A New Organocatalyst for One-Pot, Solvent-Free Synthesis of Biginelli’s 3,4-Dihydropyrimidine-2(1H)-Thiones

, & ORCID Icon
Pages 3182-3191 | Received 04 Jan 2022, Accepted 05 Apr 2022, Published online: 27 Apr 2022

References

  • A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati, and B. Carboni, “An Efficient One-Step Synthesis of 1,4-Dihydropyridines via a Triphenylphosphine-Catalyzed Three-Component Hantzsch Reaction under Mild Conditions,” Tetrahedron Letters 50, no. 37 (2009): 5248–50. doi:10.1016/j.tetlet.2009.07.018.
  • A. Kumar, and R. A. Maurya, “Efficient Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives in Aqueous Micelles,” Synlett 2008, no. 6 (2008): 883–5. doi:10.1055/s-2008-1042908.
  • K. S. Atwal, B. N. Swanson, S. E. Unger, D. M. Floyd, S. Moreland, A. Hedberg, and B. C. O'Reilly, “ Dihydropyrimidine Calcium Channel Blockers. 3,3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as Orally Effective Antihypertensive Agents ,” Journal of Medicinal Chemistry 34, no. 2 (1991): 806–11. doi:10.1021/jm00106a048.
  • P. Biginelli, and P. Gazz, “Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Gazzetta Chimica Italiana 23 (1893): 360–413.
  • N. Li, X. H. Chen, J. Song, S. W. Luo, W. Fan, and L. Z. Gong, “Highly Enantioselective Organocatalytic Biginelli and Biginelli-like Condensations: Reversal of the Stereochemistry by Tuning the 3,3'-disubstituents of phosphoric acids ,” Journal of the American Chemical Society 131, no. 42 (2009): 15301–10. doi:10.1021/ja905320q.
  • W. Y. Chen, S. D. Qin, and J. R. Jin, “Efficient Biginelli Reaction Catalyzed by Sulfamic Acid or Silica Sulfuric Acid under Solvent-Free Conditions,” Synthetic Communications 37, no. 1 (2007): 47–52. doi:10.1080/00397910600977632.
  • H. Slimi, Y. Moussaoui, and R. Ben Salem, “Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones via Biginelli Reaction Promoted by Bismuth(III) Nitrate or PPh3 without Solvent,” Arabian Journal of Chemistry 9 (2016): S510–S514. doi:10.1016/j.arabjc.2011.06.010.
  • M. M. Khodaei, A. R. Khosropour, and M. Beygzadeh, “An Efficient and Environmentally Friendly Method for Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Catalyzed by Bi(NO3)3·5H2O,” Synthetic Communications 34, no. 9 (2004): 1551–7. doi:10.1081/SCC-120030742.
  • N. Ahmed, and Z. N. Siddiqui, “Sulphated Silica Tungstic Acid as a Highly Efficient and Recyclable Solid Acid Catalyst for the Synthesis of Tetrahydropyrimidines and Dihydropyrimidines,” Journal of Molecular Catalysis A: Chemical 387 (2014): 45–56. doi:10.1016/j.molcata.2014.02.019.
  • S. D. Salim, and K. G. Akamanchi, “Sulfated Tungstate: An Alternative, Eco-Friendly Catalyst for Biginelli Reaction,” Catalysis Communications 12, no. 12 (2011): 1153–6. nodoi:10.1016/j.catcom.2011.02.018.
  • M. Zeinali-Dastmalbaf, A. Davoodnia, M. M. Heravi, N. Tavakoli-Hoseini, A. Khojastehnezhad, and H. A. Zamani, “Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and -Thiones: An Efficient Method for the Biginelli Reaction,” Bulletin of the Korean Chemical Society 32, no. 2 (2011): 656–8. doi:10.5012/bkcs.2011.32.2.656.
  • P. Salehi, M. Dabiri, M. A. Zolfigol, and M. A. Bodaghi Fard, “Silica Sulfuric Acid: An Efficient and Reusable Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Tetrahedron Letters 44, no. 14 (2003): 2889–91. doi:10.1016/S0040-4039(03)00436-2.
  • T. Jin, S. Zhang, and T. Li, “p-Toluenesulfonic Acid-Catalysed Efficient Synthesis of Dihydropyrimidines: Improved High Yielding Protocol for the Biginelli Reaction,” Synthetic Communications 32, no. 12 (2002): 1847–51. doi:10.1081/SCC-120004068.
  • A. Rajack, K. Yuvaraju, C. Praveen, and Y. L. N. Murthy, “A Facile Synthesis of 3,4-Dihydropyrimidinones/Thiones and Novel N-Dihydro Pyrimidinone-Decahydroacridine-1,8-Diones Catalyzed by Cellulose Sulfuric Acid,” Journal of Molecular Catalysis A: Chemical 370 (2013): 197–204. doi:10.1016/j.molcata.2013.01.003.
  • C. K. Khatri, D. S. Rekunge, and G. U. Chaturbhuj, “Sulfated Polyborate: A New and Eco-Friendly Catalyst for the One-Pot Multicomponent Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones via Biginelli Reaction,” New Journal of Chemistry 40, no. 12 (2016): 10412–7. doi:10.1039/C6NJ03120J.
  • S. A. Pourmousavi, and M. Hasani, “H2SO4-Silica Catalyzed One-Pot and Efficient Synthesis of Dihydropyrimidinones under Solvent-Free Conditions,” European Journal of Chemistry 8, no. 1 (2011): 462–7.
  • H. Sharghi, and M. Jokar, “Al2O3/MeSO3H: A Novel and Recyclable Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidinones or Their Sulfur Derivatives in Biginelli Condensation,” Synthetic Communications 39, no. 6 (2009): 958–79. doi:10.1080/00397910802444258.
  • H. R. Shaterian, A. Hosseinian, and M. Ghashang, “Reaction in Dry Media: Silica Gel Supported Ferric Chloride Catalyzed Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives,” Phosphorus, Sulfur Silicon Related Elements 183, no. 12 (2008): 3136–44. doi:10.1080/10426500802066096.
  • M. Nasr-Esfahani, and M. Taei, “Aluminatesulfonic Acid Nanoparticles: Synthesis, Characterization and Application as a New and Recyclable Nanocatalyst for the Biginelli and Biginelli-like Condensations,” RSC Advances 5, no. 56 (2015): 44978–89. doi:10.1039/C5RA01406A.
  • D. Angeles-Beltrán, L. Lomas-Romero, V. H.Lara-Corona, E. González-Zamora, and G. Negrón-Silva, “Sulfated Zirconia-Catalyzed Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones (DHPMs) under Solventless Conditions: Competitive Multicomponent Biginelli vs. Hantzsch Reactions,” Molecules (Basel, Switzerland) 11, no. 10 (2006): 731–8. doi:10.3390/11100731.
  • K. A. Dilmaghani, B. Zeynizadeh, and H. Parasajam, “The Efficient Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones and Their Sulfur Derivatives with H2SO4 Immobilized on Activated Charcoal,” Phosphorus, Sulfur Silicon Related Elements 187, no. 4 (2012): 544–53. doi:10.1080/10426507.2011.631644.
  • W. Su, J. Li, Z. Zheng, and Y. Shen, “One-Pot Synthesis of Dihydropyrimidiones Catalyzed by Strontium(II) Triflate under Solvent-Free Conditions,” Tetrahedron Letters 46, no. 36 (2005): 6037–40. doi:10.1016/j.tetlet.2005.07.021.
  • A. R. Gholap, K. Venkatesan, R. Pasricha, T. Daniel, R. J. Lahoti, and K. V. Srinivasan, “Reaction Catalyzed by Pd (0) Nanoparticles at Ambient Conditions under Ultrasound Irradiation,” The Journal of Organic Chemistry 70, no. 12 (2005): 4869–72. doi:10.1021/jo0503815.
  • X. Zhang, Y. Li, C. Liu, and J. Wang, “An Efficient Synthesis of 4-Substituted Pyrazolyl-3,4-Dihydropyrimidin-2(1H)-(Thio)Ones Catalyzed by Mg(ClO4)2 under Ultrasound Irradiation,” Journal of Molecular Catalysis A: Chemical 253, no. 1-2 (2006): 207–11. doi:10.1016/j.molcata.2006.03.018.
  • H. Valizadeh, and A. Shockravi, “Imidazolium-Based Phosphinite Ionic Liquid as Reusable Catalyst and Solvent for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-(Thio)Ones,” Heteroatom Chemistry 20, no. 5 (2009): 284–8. doi:10.1002/hc.20549.
  • J. Safari, and S. Gandomi-Ravandi, “Titanium Dioxide Supported on MWCNTs as an Eco-Friendly Catalyst in the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones Accelerated under Microwave Irradiation,” New Journal of Chemistry 38, no. 8 (2014): 3514–21. doi:10.1039/C3NJ01618H.
  • J. Lal, M. Sharma, S. Gupta, P. Parashar, P. Sahu, and D. D. Agarwal, “Hydrotalcite: A Novel and Reusable Solid Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidinones and Mechanistic Study under Solvent Free Conditions,” Journal of Molecular Catalysis A: Chemical 352 (2012): 31–7. doi:10.1016/j.molcata.2011.09.009.
  • S. Puri, B. Kaur, A. Parmar, and H. Kumar, “Ultrasound Promoted Cu(ClO4)2 Catalysed Rapid Synthesis of Substituted 1,2,3,4-Tetrahydropyrimidine-2-Ones and Hantzsch 1,4-Dihydropyridines in Dry Media,” Heterocyclic Compounds 15, no. 1 (2009): 51–6.
  • K. A. Dilmaghani, B. Zeynizadeh, and M. Amirpoor, “Ultrasound-Mediated Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones (or Thiones) with NaHSO4·H2O,” Phosphorus, Sulfur Silicon Related Elements 188, no. 11 (2013): 1634–42. doi:10.1080/10426507.2013.777725.
  • P. I. Dalko, and L. Moisan, “In the Golden Age of Organocatalysis,” Angewandte Chemie (International ed. in English) 43, no. 39 (2004): 5138–75. doi:10.1002/anie.200400650.
  • G. W. Amarante, and F. Coelho, “Reações de Organocatálise Com Aminas Quirais: aspectos Mecanísticos e Aplicações em Síntese Orgânica,” Química Nova 32, no. 2 (2009): 469–81. doi:10.1590/S0100-40422009000200034.
  • Suresh, A. Saini, D. Kumar, and J. S. Sandhu, “Multicomponent Eco-Friendly Synthesis of 3,4-Dihydropyrimidine-2-(1H)-Ones Using an Organocatalyst Lactic Acid,” Green Chemistry Letter Review 2, no. 1 (2009): 29–33. doi:10.1080/17518250902973833.
  • A. De Vasconcelos, P. S. Oliveira, M. Ritter, R. A. Freitag, R. L. Romano, F. H. Quina, L. Pizzuti, C. M. Pereira, F. M. Stefanello, and A. G. Barschak, “Antioxidant Capacity and Environmentally Friendly Synthesis of Dihydropyrimidin-(2H)-Ones Promoted by Naturally Occurring Organic Acids,” Journal of Biochemical and Molecular Toxicology 26, no. 4 (2012): 155–61. doi:10.1002/jbt.20424.
  • I. Sehout, R. Boulcina, B. Boumoud, T. Boumoud, and A. Debache, “Solvent-Free Synthesis of Polyhydroquinoline and 1,8-Dioxodecahydroacridine Derivatives through the Hantzsch Reaction Catalyzed by a Natural Organic Acid: A Green Method,” Synthetic Communications 47, no. 12 (2017): 1185–19. doi:10.1080/00397911.2017.1316406.
  • M. Kargar, R. Hekmatshoar, A. Mostashari, and Z. Hashemi, “Efficient and Green Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones Using Imidazol-1-yl-Acetic Acid as a Novel, Reusable and Water-Soluble Organocatalyst,” Catalysis Communications 15, no. 1 (2011): 123–6. doi:10.1016/j.catcom.2011.08.022.
  • R. M. Borik, “A Comparison on Microwave and Ultrasound Accelerated Synthetic Route to Dihydropyrimidinones Catalyzed by Sulfanilic Acid in Water,” Australian Journal of Basic Applied Science 7, no. 1 (2013): 543–7.
  • A. D. Sagar, S. M. Reddy, J. S. Pulle, and M. V. Yadav, “Multicomponent Biginelli’s Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Catalyzed by Phenyl Phosphonic Acid,” ISRN Organic Chemistry 3 (2011): 649–54.
  • C. H. O. Huang, “Effect of Imides on Nickel-Tungsten Alloy Electroforming,” Journal of Materials Science 34, no. 6 (1999): 1373–7. doi:10.1023/A:1004570703480.
  • F. A. Cotton, and P. F. Stokely, “Structural Basis for the Acidity of Sulfonamides. Crystal Structures of Dibenzenesulfonamide and Its Sodium Salt,” Journal of Chemical Society 92, no. 2 (1970): 292–302.
  • Z. Yang, S. Yang, and J. Xu, “Sulfur-Directed Metal-Free and Regiospecific Methyl C(sp3)–H Imidation of Thioanisoles,” Tetrahedron 73, no. 23 (2017): 3240–8. doi:10.1016/j.tet.2017.04.054.
  • M. A. Salem, M. I. Marzouk, M. S. Salem, and G. A. Alshibani, “One‐Pot Synthesis of 1, 2,3,4‐Tetrahydropyrimidin‐2(1H)‐Thione Derivatives and Their Biological Activity,” Journal of Heterocyclic Chemistry 53, no. 2 (2016): 545–57. doi:10.1002/jhet.2358.
  • M. Chandel, B. K. Ghosh, D. Moitra, M. K. Patra, S. R. Vadera, and N. N. Ghosh, “Synthesis of Various Ferrite (MFe2O4) Nanoparticles and Their Application as Efficient and Magnetically Separable Catalyst for Biginelli Reaction,” Journal of Nanoscience and Nanotechnology 18, no. 4 (2018): 2481–92. doi:10.1166/jnn.2018.14345.
  • S. V. Rashmi, C. N. Sandhya, B. Raghava, M. N. Kumara, K. Mantelingu, and K. S. Rangappa, “Trifluoroethanol as a Metal-Free, Homogeneous, and Recyclable Medium for the Efficient One-Pot Synthesis of Dihydropyrimidones,” Synthetic Communications 42, no. 3 (2012): 424–33. doi:10.1080/00397911.2010.525335.
  • S. Khaksar, S. M. Vahdat, and R. N. Moghaddamnejad, “Pentafluorophenylammonium Triflate: An Efficient, Practical, and Cost-Effective Organocatalyst for the Biginelli Reaction,” Monatshefte Für Chemie - Chemical Monthly 143, no. 12 (2012): 1671–4. doi:10.1007/s00706-012-0752-2.
  • W. A. Al-Masoudi, N. A. Al-Masoudi, B. Weibert, and R. Winter, “Synthesis, X-Ray Structure, in Vitro HIV and Kinesin Eg5 Inhibition Activities of New Arene Ruthenium Complexes of Pyrimidine Analogs,” Journal of Coordination Chemistry 70, no. 12 (2017): 2061–73. doi:10.1080/00958972.2017.1334259.
  • Z. Liu, R. Ma, D. Cao, and C. Liu, “New Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Benzotriazolium-Based Ionic Liquids under Solvent-Free Conditions ,” Molecules (Basel, Switzerland) 21, no. 4 (2016): 462. doi:10.3390/molecules21040462.
  • W. M. Hussein, S. S. Fatahala, Z. M. Mohamed, R. P. McGeary, G. Schenk, D. L. Ollis, and M. S. Mohamed, “Synthesis and Kinetic Testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa ,” Chemical Biology & Drug Design 80, no. 4 (2012): 500–515. doi:10.1111/j.1747-0285.2012.01440.x.
  • A. Crespo, A. El Maatougui, P. Biagini, J. Azuaje, A. Coelho, J. Brea, M. I. Loza, M. I. Cadavid, X. García-Mera, H. Gutiérrez-de-Terán, et al, “Discovery of 3,4-Dihydropyrimidin-2(1H)-ones As a Novel Class of Potent and Selective A2B Adenosine Receptor Antagonists,” ACS Medicinal Chemistry Letters 4, no. 11 (2013): 1031–1036. doi:10.1021/ml400185v.
  • K. V. Srinivas, and B. Das, “Iodine Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2 (1H)-Ones and Thiones: A Simple and Efficient Procedure for the Biginelli Reaction,” Synthesis 2004, no. 13 (2004): 2091–2093. 2004) doi:10.1055/s-2004-829170.
  • General Procedures: Method A: A mixture of β-ketoesters (1 mmol), aldehyde (1 mmol), urea, or thiourea (1.0 mmol), and N-(phenylsulfonyl)benzenesulfonamide (5 mol.%) was stirred at r.t. The reaction was monitored by thin-layer chromatography using EtOAc: Hexane (30:70). On completion of the reaction, it cooled to room temperature and quenched in water, and the product was extracted by ethyl acetate; The organic layer was dried over sodium sulfate and condensed in a vacuum to get pure products. The products obtained were known compounds identified by 1H NMR spectroscopy, and the analytical data were compared with the literature values. Method B: A mixture of β-ketoesters (1 mmol), aldehyde (1 mmol), urea, or thiourea (1.0 mmol), and N-(phenylsulfonyl)benzenesulfonamide (5 mol.%) was kept at 90 °C. The reaction was monitored by thin-layer chromatography using EtOAc: Hexane (30:70). On completion of the reaction, cooled to room temperature and quenched in water, and the product was extracted by ethyl acetate. The organic layer was dried over sodium sulfate and condensed in a vacuum to get pure products. The products obtained were known compounds identified by 1H NMR spectroscopy, and the analytical data were compared with the literature values.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.