175
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of 4,4'-(Aryl Methylene)Bis(3-Methyl-1H-Pyrazol-5-ol) Derivatives and Pyrano[2, 3-c] Pyrazole Derivatives Using an Engineered Copper-Based Nano-Magnetic Catalyst (Fe3O4@SiO2/Si(OEt)(CH2)3NH/CC/EDA/Cu(OAc)2)

, , , , &
Pages 3192-3215 | Received 31 Jan 2022, Accepted 05 Apr 2022, Published online: 23 Apr 2022

References

  • Z. Chen, Q. Zhu, and W. Su, “A Novel Sulfonic Acid Functionalized Ionic Liquid Catalyzed Multicomponent Synthesis of 10, 11-Dihydrochromeno [4, 3-b] Chromene-6, 8 (7H, 9H)-Dione Derivatives in Water,” Tetrahedron Letters 52, no. 20 (2011): 2601–4. doi:10.1016/j.tetlet.2011.03.059.
  • T. Akbarpoor, A. Khazaei, J. Y. Seyf, N. Sarmasti, and M. Mahmoudiani Gilan, “One-Pot Synthesis of 2-Amino-3-Cyanopyridines and Hexahydroquinolines Using Eggshell-Based Nano-Magnetic Solid Acid Catalyst via Anomeric-Based Oxidation,” Research on Chemical Intermediates 46, no. 2 (2020): 1539–54. doi:10.1007/s11164-019-04049-y.
  • J. P. Wan, S. F. Gan, G. L. Sun, and Y. J. Pan, “Novel Regioselectivity: three-component cascade synthesis of unsymmetrical 1,4- and 1,2-dihydropyridines,” The Journal of Organic Chemistry 74, no. 7 (2009): 2862–5. doi:10.1021/jo900068z.
  • M. Hosseini-Sarvari, and S. Shafiee-Haghighi, “Nano-ZnO as Heterogeneous Catalyst for Three-Component One-Pot Synthesis of Tetrahydrobenzo [b] Pyrans in Water,” Chemistry of Heterocyclic Compounds 48, no. 9 (2012): 1307–13. doi:10.1007/s10593-012-1137-5.
  • L. Weber, “The Application of Multi-Component Reactions in Drug Discovery,” Current Medicinal Chemistry 9, no. 23 (2002): 2085–93. doi:10.2174/0929867023368719.
  • A. Shahrisa, and S. Esmati, “Three Novel Sequential Reactions for the Facile Synthesis of a Library of Bisheterocycles Possessing the 3-Aminoimidazo [1, 2-a] Pyridine Core Catalyzed by Bismuth (III) Chloride,” Synlett 24, no. 05 (2013): 595–602. doi:10.1055/s-0032-1318221.
  • A. Maleki, M. Aghaei, and N. Ghamari, “Facile Synthesis of Tetrahydrobenzoxanthenones via a One‐Pot Three‐Component Reaction Using an Eco‐Friendly and Magnetized Biopolymer Chitosan‐Based Heterogeneous Nanocatalyst,” Applied Organometallic Chemistry 30, no. 11 (2016): 939–42. doi:10.1002/aoc.3524.
  • Ş. G. Küçükgüzel, and S. Şenkardeş, “Recent Advances in Bioactive Pyrazoles,” European Journal of Medicinal Chemistry 97 (2015): 786–815. doi:10.1016/j.ejmech.2014.11.059.
  • G. M. Reddy, G. Sravya, G. Yuvaraja, A. Camilo, G. V. Zyryanov, and J. R. Garcia, “Highly Functionalized Pyranopyrazoles: Synthesis, Antimicrobial Activity, Simulation Studies and Their Structure Activity Relationships (SARs),” Research on Chemical Intermediates 44, no. 12 (2018): 7491–507. doi:10.1007/s11164-018-3569-8.
  • S. J. Mohr, M. A. Chirigos, F. S. Fuhrman, and J. W. Pryor, “Pyran Copolymer as an Effective Adjuvant to Chemotherapy against a Murine Leukemia and Solid Tumor,” Cancer Research 35, no. 12 (1975): 3750–4.
  • S. M. Mahdavi, A. Habibi, H. Dolati, S. M. Shahcheragh, S. Sardari, and P. Azerang, “Synthesis and Antimicrobial Evaluation of 4H-Pyrans and Schiff Bases Fused 4H-Pyran Derivatives as Inhibitors of Mycobacterium bovis (BCG),” Iranian Journal of Pharmaceutical Research : Ijpr 17, no. 4 (2018): 1229.
  • M. M. Khafagy, A. H. F. Abd El-Wahab, F. A. Eid, and A. M. El-Agrody, “Synthesis of Halogen Derivatives of Benzo [h] Chromene and Benzo [a] Anthracene with Promising Antimicrobial Activities,” Il Farmaco 57, no. 9 (2002): 715–22. doi:10.1016/S0014-827X(02)01263-6.
  • D. Kumar, V. B. Reddy, S. Sharad, U. Dube, and K. Suman, “A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-oxo-5,6,7,8-Tetrahydro-4H-Chromenes,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3805–9. doi:10.1016/j.ejmech.2009.04.017.
  • P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, et al, “Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure-Activity Relationships of 4-Guanidino- and 4-Amino-4H-Pyran-6-Carboxamides,” Journal of Medicinal Chemistry 41, no. 6 (1998): 787–97. doi:10.1021/jm970374b.
  • A. Martínez-Grau, and J. L. Marco, “Friedländer Reaction on 2-Amino-3-Cyano-4H-Pyrans: Synthesis of Derivatives of 4H-Pyran [2, 3-b] Quinoline, New Tacrine Analogues,” Bioorganic & Medicinal Chemistry Letters 7, no. 24 (1997): 3165–70. doi:10.1016/S0960-894X(97)10165-2.
  • S. Paul, P. Bhattacharyya, and A. R. Das, “One-Pot Synthesis of Dihydropyrano [2, 3-c] Chromenes via a Three Component Coupling of Aromatic Aldehydes, Malononitrile, and 3-Hydroxycoumarin Catalyzed by Nano-Structured ZnO in Water: A Green Protocol,” Tetrahedron Letters 52, no. 36 (2011): 4636–41. doi:10.1016/j.tetlet.2011.06.101.
  • M. Zarghani, and B. Akhlaghinia, “Sulfonated Nanohydroxyapatite Functionalized with 2-Aminoethyl Dihydrogen Phosphate (HAP@ AEPH 2-so 3 H) as a New Recyclable and Eco-Friendly Catalyst for Rapid One-Pot Synthesis of 4, 4′-(Aryl Methylene) Bis (3-Methyl-1 H-Pyrazol-5-ol) s,” RSC Advances 5, no. 107 (2015): 87769–80. doi:10.1039/C5RA16236J.
  • Z. Zhou, and Y. Zhang, “An Efficient and Green One-Pot Three-Component Synthesis of 4, 4′-(Arylmethylene) Bis (1H-Pyrazol-5-ol) s Catalyzed by 2-Hydroxy Ethylammonium Propionate,” Green Chemistry Letters and Reviews 7, no. 1 (2014): 18–23. doi:10.1080/17518253.2014.894142.
  • Z. Karimi-Jaberi, B. Pooladian, M. Moradi, and E. Ghasemi, “1, 3, 5-Tris (Hydrogensulfato) Benzene: A New and Efficient Catalyst for Synthesis of 4, 4′-(Arylmethylene) Bis (1H-Pyrazol-5-ol) Derivatives,” Chinese Journal of Catalysis 33, no. 11–12 (2012): 1945–9. doi:10.1016/S1872-2067(11)60477-4.
  • K. Sujatha, G. Shanthi, N. P. Selvam, S. Manoharan, P. T. Perumal, and M. Rajendran, “Synthesis and Antiviral Activity of 4, 4′-(Arylmethylene) Bis (1H-Pyrazol-5-Ols) against Peste Des Petits Ruminant Virus (PPRV),” Bioorganic & Medicinal Chemistry Letters 19, no. 15 (2009): 4501–3. doi:10.1016/j.bmcl.2009.02.113.
  • B. S. Kuarm, and B. Rajitha, “Xanthan Sulfuric Acid: An Efficient, Biosupported, and Recyclable Solid Acid Catalyst for the Synthesis of 4, 4′-(Arylmethylene) Bis (1H-Pyrazol-5-Ols),” Synthetic Communications 42, no. 16 (2012): 2382–7. doi:10.1080/00397911.2011.557516.
  • K. Niknam, D. Saberi, M. Sadegheyan, and A. Deris, “Silica-Bonded S-Sulfonic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4, 4′-(Arylmethylene) Bis (1H-Pyrazol-5-Ols),” Tetrahedron Letters 51, no. 4 (2010): 692–4. doi:10.1016/j.tetlet.2009.11.114.
  • S. Sobhani, E. Safaei, A. R. Hasaninejad, and S. Rezazadeh, “An Eco-Friendly Procedure for the Efficient Synthesis of Bis (Indolyl) Methanes in Aqueous Media,” Journal of Organometallic Chemistry 694, no. 18 (2009): 3027–31. doi:10.1016/j.jorganchem.2009.05.004.
  • E. Mosaddegh, A. Hassankhani, and A. Baghizadeh, “Cellulose Sulfuric Acid as a New, Biodegradable and Environmentally Friendly Bio-Polymer for Synthesis of 4,4'-Arylmethylene-Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-ol)),” Journal of the Chilean Chemical Society 55, no. 4 (2010): 419–20. doi:10.4067/S0717-97072010000400001.
  • K. Niknam, and S. Mirzaee, “Silica Sulfuric Acid, an Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4, 4′-(Arylmethylene) Bis (1 H-Pyrazol-5-Ols),” Synthetic Communications 41, no. 16 (2011): 2403–13. doi:10.1080/00397911.2010.502999.
  • N. G. Khaligh, T. Mihankhah, H. Gorjian, and M. R. Johan, “Greener and Facile Synthesis of 4, 4′-(Arylmethylene) Bis (3-Methyl-1-Phenyl-1H-Pyrazol-5-ol) s through a Conventional Heating Procedure,” Synthetic Communications 50, no. 21 (2020): 3276–86. doi:10.1080/00397911.2020.1799014.
  • M. A. Zolfigol, M. Navazeni, M. Yarie, and R. Ayazi‐Nasrabadi, “Application of a Biological‐Based Nanomagnetic Catalyst in the Synthesis of Bis‐Pyrazols and Pyrano [3, 2‐c] Pyrazoles,” Applied Organometallic Chemistry 31, no. 6 (2017): e3633. doi:10.1002/aoc.3633.
  • A. Hasaninejad, A. Zare, M. Shekouhy, and N. Golzar, “Efficient Synthesis of 4, 4′-(Arylmethylene)-Bis (3-Methyl-1-Phenylpyrazol-5-ol) Derivatives in PEG-400 under Catalyst-Free Conditions,” Organic Preparations and Procedures International 43, no. 1 (2011): 131–137. doi:10.1080/00304948.2010.526827.
  • A. Zare, M. Merajoddin, A. R. Moosavi-Zare, and M. Zarei, “In Situ Generation of Trityl Carbocation (Ph3C+) as a Homogeneous Organocatalyst for the Efficient Synthesis of 4, 4′-(Arylmethylene)-Bis (3-Methyl-1-Phenyl-1H-Pyrazol-5-ol) s,” Chinese Journal of Catalysis 35, no. 1 (2014): 85–89. doi:10.1016/S1872-2067(12)60728-1.
  • Z. Zhou, and Y. Zhang, “An Eco-Friendly One-Pot Synthesis oF 4, 4'-(Arylmethylene) Bis (1H-Pyrazol-5-Ols) Using [Et3NH][HSO4] as a Recyclable Catalyst,” Journal of the Chilean Chemical Society 60, no. 3 (2015): 2992–6. doi:10.4067/S0717-97072015000300003.
  • H. Filian, A. Ghorbani-Choghamarani, and E. Tahanpesar, “Ni-Guanidine@ MCM-41 NPs: A New Catalyst for the Synthesis of 4, 4′-(Arylmethylene)-Bis-(3-Methyl-1-Phenyl-1 H-Pyrazol-5-Ols) and Symmetric di-Aryl Sulfides,” Journal of the Iranian Chemical Society 16, no. 12 (2019): 2673–81. doi:10.1007/s13738-019-01727-x.
  • A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, Z. Asgari, M. Shekouhy, A. Zare, and A. Hasaninejad, “Preparation of 4, 4′-(Arylmethylene)-Bis (3-Methyl-1-Phenyl-1 H-Pyrazol-5-ol) s over 1, 3-Disulfonic Acid Imidazolium Tetrachloroaluminate as a Novel Catalyst,” RSC Advances 2, no. 21 (2012): 8010–3. doi:10.1039/c2ra20988h.
  • M. Soleimani, A. Khazaei, N. Sarmasti, and T. Akbarpour, “Synthesis of Sulfonated Melamine-Functionalized Fe3O4@SiO2@ Si–(CH2)3@Melamine Nanoparticles and Its Application in the Synthesis of 4,4’-(Aryl Methylene)Bis(3-Methyl-1H-Pyrazol-5-ol) s and Hexahydroquinolines,” Journal of the Iranian Chemical Society 17 (2021): 1849–1863. doi:10.1007/s13738-021-02420-8.
  • F. Hassanzadeh-Afruzi, S. Asgharnasl, S. Mehraeen, Z. Amiri-Khamakani, and A. Maleki, “Guanidinylated SBA-15/Fe3O4 Mesoporous Nanocomposite as an Efficient Catalyst for the Synthesis of Pyranopyrazole Derivatives,” Scientific Reports 11, no. 1 (2021): 1–15. doi:10.1038/s41598-021-99120-3.
  • M. Kamalzare, M. R. Ahghari, M. Bayat, and A. Maleki, “Fe3O4@ Chitosan-Tannic Acid Bionanocomposite as a Novel Nanocatalyst for the Synthesis of Pyranopyrazoles,” Scientific Reports 11, no. 1 (2021): 1–10. doi:10.1038/s41598-021-99121-2.
  • M. Kamalzare, M. Bayat, and A. Maleki, “Green and Efficient Three-Component Synthesis of 4H-Pyran Catalysed by CuFe2O4@starch as a Magnetically Recyclable Bionanocatalyst,” Royal Society Open Science 7, no. 7 (2020): 200385. doi:10.1098/rsos.200385.
  • S. Bahrami, F. Hassanzadeh‐Afruzi, and A. Maleki, “Synthesis and Characterization of a Novel and Green Rod‐like Magnetic ZnS/CuFe2O4/Agar Organometallic Hybrid Catalyst for the Synthesis of Biologically‐Active 2‐Amino‐Tetrahydro‐4H‐Chromene‐3‐Carbonitrile Derivatives,” Applied Organometallic Chemistry 34, no. 11 (2020): e5949. doi:10.1002/aoc.5949.
  • A. Maleki, M. Aghaei, and T. Kari, “Facile Synthesis of 7-Aryl-Benzo [h] Tetrazolo [5, 1-b] Quinazoline-5, 6-Dione Fused Polycyclic Compounds by Using a Novel Magnetic Polyurethane Catalyst,” Polycyclic Aromatic Compounds 39, no. 3 (2019): 266–78. doi:10.1080/10406638.2017.1325746.
  • A. Maleki, “An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles,” Polycyclic Aromatic Compounds 38, no. 5 (2018): 402–9. doi:10.1080/10406638.2016.1221836.
  • A. Maleki, A. A. Jafari, and S. Yousefi, “Green Cellulose-Based Nanocomposite Catalyst: Design and Facile Performance in Aqueous Synthesis of Pyranopyrimidines and Pyrazolopyranopyrimidines,” Carbohydrate Polymers 175 (2017): 409–16. doi:10.1016/j.carbpol.2017.08.019.
  • Z. Hajizadeh, and A. Maleki, “Poly (Ethylene Imine)-Modified Magnetic Halloysite Nanotubes: A Novel, Efficient and Recyclable Catalyst for the Synthesis of Dihydropyrano [2, 3-c] Pyrazole Derivatives,” Molecular Catalysis 460 (2018): 87–93. doi:10.1016/j.mcat.2018.09.018.
  • A. Shaabani, M. Seyyedhamzeh, A. Maleki, M. Behnam, and F. Rezazadeh, “Synthesis of Fully Substituted Pyrazolo [3, 4-b] Pyridine-5-Carboxamide Derivatives via a One-Pot Four-Component Reaction,” Tetrahedron Letters 50, no. 24 (2009): 2911–3. doi:10.1016/j.tetlet.2009.03.200.
  • A. Maleki, “Green Oxidation Protocol: Selective Conversions of Alcohols and Alkenes to Aldehydes, Ketones and Epoxides by Using a New Multiwall Carbon Nanotube-Based Hybrid Nanocatalyst via Ultrasound Irradiation,” Ultrasonics Sonochemistry 40, no. Pt A (2018): 460–4. doi:10.1016/j.ultsonch.2017.07.020.
  • F. Alemi-Tameh, J. Safaei-Ghomi, M. Mahmoudi-Hashemi, and M. Monajjemi, “Amino Functionalized Nano Fe3O4@ SiO2 as a Magnetically Green Catalyst for the One-Pot Synthesis of Spirooxindoles under Mild Conditions,” Polycyclic Aromatic Compounds 38, no. 3 (2018): 199–212. doi:10.1080/10406638.2016.1179650.
  • A. Maleki, “Synthesis of Imidazo [1, 2‐a] Pyridines Using Fe3O4@ SiO2 as an Efficient Nanomagnetic Catalyst via a One‐Pot Multicomponent Reaction,” Helvetica Chimica Acta 97, no. 4 (2014): 587–93. doi:10.1002/hlca.201300244.
  • A. Maleki, “One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles,” Tetrahedron Letters 54, no. 16 (2013): 2055–9. doi:10.1016/j.tetlet.2013.01.123.
  • A. Maleki, “Fe3O4/SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines,” Tetrahedron 68, no. 38 (2012): 7827–33. doi:10.1016/j.tet.2012.07.034.
  • H. Sheibani, and M. Babaie, “Three-Component Reaction to Form 1, 4-Dihydropyrano [2, 3-c] Pyrazol-5-yl Cyanides,” Synthetic Communications 40, no. 2 (2009): 257–65. doi:10.1080/00397910902964866.
  • P. Muthuraja, S. Prakash, G. Siva, Sh Muthusubramanian, and P. Manisankar, “Expedient Ytterbium Triflate Catalyzed One‐Pot Mulicomponent Synthesis of Spiro [Indoline‐3, 4′‐Pyrano [2, 3‐c] Pyrazole],” ChemistrySelect 2, no. 31 (2017): 10071–5. doi:10.1002/slct.201701261.
  • M. Mishra, A. Nizam, K. J. Jomon, and K. Tadaparthi, “A New Facile Ultrasound-Assisted Magnetic Nano-[CoFe2O4]-Catalyzed One-Pot Synthesis of Pyrano [2, 3-c] Pyrazoles,” Russian Journal of Organic Chemistry 55, no. 12 (2019): 1925–8. doi:10.1134/S1070428019120194.
  • E. E. El-Arab, “Synthesis and Cytotoxicity of Novel Pyrazole Derivatives Derived from 3-Methyl-1-Phenyl-1H-Pyrazol-5 (4H)-One,” Egyptian Journal of Chemistry 58 (2015): 741–53.
  • W. Li, R. Ruzi, K. Ablajan, and Z. Ghalipt, “One-Pot Synthesis of Highly Functionalized Pyrano [2, 3-c] Pyrazole-4, 4′-Diacetate and 6-Oxo-Pyrano [2, 3-c] Pyrazole Derivatives Catalyzed by Urea,” Tetrahedron 73, no. 2 (2017): 164–71. doi:10.1016/j.tet.2016.11.067.
  • Z. K. Jaberi, M. M. R. Shams, and B. Pooladian, “Expeditious, Four-Component Synthesis of 1, 4-Dihydropyrano [2, 3-c] Pyrazole Derivatives Catalyzed by Trichloroacetic Acid or Ceric Sulfate,” Acta Chimica Slovenica 60, no. 1 (2013): 105–8.
  • M. A. Ghasemzadeh, B. Mirhosseini‐Eshkevari, and M. H. Abdollahi‐Basir, “MIL‐53 (Fe) Metal–Organic Frameworks (MOFs) as an Efficient and Reusable Catalyst for the One‐Pot Four‐Component Synthesis of Pyrano [2, 3‐c]‐Pyrazoles,” Applied Organometallic Chemistry 33, no. 1 (2019): e4679. doi:10.1002/aoc.4679.
  • N. Nagasundaram, M. Kokila, P. Sivaguru, R. Santhosh, and A. Lalitha, “SO3H@ Carbon Powder Derived from Waste Orange Peel: An Efficient, Nano-Sized Greener Catalyst for the Synthesis of Dihydropyrano [2, 3-c] Pyrazole Derivatives,” Advanced Powder Technology 31, no. 4 (2020): 1516–28. doi:10.1016/j.apt.2020.01.012.
  • T. Akbarpour, J. Yousefi Seyf, A. Khazaei, and N. Sarmasti, “Synthesis of Pyrano [2, 3-c] Pyrazole Derivatives Using a Novel Ionic-Liquid Based Nano-Magnetic Catalyst (Fe3O4@ SiO2@(CH2)3NH@CC@Imidazole@SO3H+Cl−),” Polycyclic Aromatic Compounds (2021): 1-21. doi:10.1080/10406638.2021.1873152.
  • Z. Zhang, B. Xu, and X. Wang, “Engineering Nanointerfaces for Nanocatalysis,” Chemical Society Reviews 43, no. 22 (2014): 7870–86. doi:10.1039/c3cs60389j.
  • P. Das, N. Aggarwal, and N. R. Guha, “Solid Supported Ru (0) Nanoparticles: An Efficient Ligand-Free Heterogeneous Catalyst for Aerobic Oxidation of Benzylic and Allylic Alcohol to Carbonyl,” Tetrahedron Letters 54, no. 23 (2013): 2924–8. doi:10.1016/j.tetlet.2013.03.106.
  • S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic Nanoparticles: Recent Advances in Synthesis, Self-Assembly and Applications,” Journal of Materials Chemistry 21, no. 42 (2011): 16819–45. doi:10.1039/c1jm11845e.
  • W. Wu, Q. He, and C. Jiang, “Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies,” Nanoscale Research Letters 3, no. 11 (2008): 397–415. doi:10.1007/s11671-008-9174-9.
  • T. Akbarpour, A. Khazaei, J. Yousefi. Seyf, and N. Sarmasti, “Synthesis of 1‐Aminoalkyl‐2‐Naphthols Derivatives Using an Engineered Copper‐Based Nanomagnetic Catalyst (Fe3O4@CQD@Si(OEt)(CH2)3NH@CC@N3@Phenylacetylene@Cu),” Applied Organometallic Chemistry 35, no. 10 (2021): e6361. doi:10.1002/aoc.6361.
  • M. Faraji, Y. Yamini, and M. Rezaee, “Magnetic Nanoparticles: synthesis, Stabilization, Functionalization, Characterization, and Applications,” Journal of the Iranian Chemical Society 7, no. 1 (2010): 1–37. doi:10.1007/BF03245856.
  • C. S. Gill, B. A. Price, and C. W. Jones, “Sulfonic Acid-Functionalized Silica-Coated Magnetic Nanoparticle Catalysts,” Journal of Catalysis 251, no. 1 (2007): 145–52. doi:10.1016/j.jcat.2007.07.007.
  • T. A. Ngu, and Z. Li, “Phosphotungstic Acid-Functionalized Magnetic Nanoparticles as an Efficient and Recyclable Catalyst for the One-Pot Production of Biodiesel from Grease via Esterification and Transesterification,” Green Chemistry 16, no. 3 (2014): 1202–10. doi:10.1039/c3gc41379a.
  • N. Sarmasti, J. Yousefi. Seyf, and A. Khazaei, “Synthesis and Characterization of [Fe3O4@ CQDs@ Si (CH2) 3NH2@ CC@ EDA@ SO3H]+ Cl − and Fe3O4@ CQDs@ Si (CH2) 3NH2@ CC@ EDA@ Cu Nanocatalyts and Their Application in the Synthesis of 5-Amino-1, 3-Diphenyl-1H-Pyrazole-4-Carbonitrile and 1-(Morpholino (Phenyl) Methyl) Naphthalen-2-ol Derivatives,” Arabian Journal of Chemistry 14, no. 3 (2021): 103026. doi:10.1016/j.arabjc.2021.103026.
  • R. K. Sithole, L. F. E. Machogo, M. A. Airo, S. S. Gqoba, M. J. Moloto, P. Shumbula, J. V. Wyk, and N. Moloto, “Synthesis and Characterization of Cu3N Nanoparticles Using Pyrrole-2-Carbaldpropyliminato Cu (II) Complex and Cu(NO3)2 as Single-Source Precursors: The Search for an Ideal Precursor,” New Journal of Chemistry 42, no. 4 (2018): 3042–9. doi:10.1039/C7NJ05181F.
  • H. Ebrahimiasl, and D. Azarifar, “Copper‐Based Schiff Base Complex Immobilized on Core‐Shell Fe3O4@ SiO2 as a Magnetically Recyclable and Highly Efficient Nanocatalyst for Green Synthesis of 2‐Amino‐4H‐Chromene Derivatives,” Applied Organometallic Chemistry 34, no. 3 (2020): e5359. doi:10.1002/aoc.5359.
  • Sh Patil, R. Tandon, and N. Tandon, “A Current Research on Silica Coated Ferrite Nanoparticle and Their Application,” Current Research in Green and Sustainable Chemistry 4 (2021): 100063. doi:10.1016/j.crgsc.2021.100063.
  • A. Khazaei, M. M. Gilan, and N. Sarmasti, “Magnetic‐Based Picolinaldehyde–Melamine Copper Complex for the One‐Pot Synthesis of Hexahydroquinolines via Hantzsch Four‐Component Reactions,” Applied Organometallic Chemistry 32, no. 3 (2018): e4151. doi:10.1002/aoc.4151.
  • S. A. Salem, A. Khazaei, J. Y. Seyf, N. Sarmasti, and M. M. Gilan, “Preparation of Magnetic Cu (II) Nano-Structure (Based on Nano-Fe3O4) and Application to the Synthesis of Hexahydroquinoline Derivatives,” Polycyclic Aromatic Compounds 41 (2019).
  • Ferdi Schüth, Michael D. Ward, and Jillian M. Buriak, “Common Pitfalls of Catalysis Manuscripts Submitted to Chemistry of Materials,” Chemistry of Materials 30, no. 11 (2018): 3599–600. doi:10.1021/acs.chemmater.8b01831.
  • A. Khazaei, F. Abbasi, and A. R. Moosavi-Zare, “Tandem cyclocondensation-Knoevenagel–Michael Reaction of Phenyl Hydrazine, Acetoacetate Derivatives and Arylaldehydes,” New Journal of Chemistry 38, no. 11 (2014): 5287–92. doi:10.1039/C4NJ01079E.
  • M. Baghernejad, and K. Niknam, “Synthesis of 4, 4'-(Arylmethylene) Bis (1H-Pyrazol-5-Ols) Using Silica-Bonded Ionic Liquid as Recyclable Catalyst,” International Journal of Chemistry 4, no. 3 (2012): 52. doi:10.5539/ijc.v4n3p52.
  • T. Mandal, S. Maity, D. Dasgupta, and S. Datta, “Advanced Oxidation Process and Biotreatment: Their Roles in Combined Industrial Wastewater Treatment,” Desalination 250, no. 1 (2010): 87–94. doi:10.1016/j.desal.2009.04.012.
  • M. J. Nasab, A. R. Kiasat, and R. Zarasvandi, “β-Cyclodextrin Nanosponge Polymer: A Basic and Eco-Friendly Heterogeneous Catalyst for the One-Pot Four-Component Synthesis of Pyranopyrazole Derivatives under Solvent-Free Conditions,” Reaction Kinetics, Mechanisms and Catalysis 124, no. 2 (2018): 767–78. doi:10.1007/s11144-018-1373-5.
  • J. Albadi, and A. Mansournezhad, “Aqua-Mediated Multicomponent Synthesis of Various 4 H-Pyran Derivatives Catalyzed by Poly (4-Vinylpyridine)-Supported Copper Iodide Nanoparticle Catalyst,” Research on Chemical Intermediates 42, no. 6 (2016): 5739–52. doi:10.1007/s11164-015-2400-z.
  • J. F. Zhou, S. J. Tu, H. Q. Zhu, and S. J. Zhi, “A Facile One Pot Synthesis of Pyrano [2, 3-c] Pyrazole Derivatives under Microwave Irradiation,” Synthetic Communications 32, no. 21 (2002): 3363–6. doi:10.1081/SCC-120014044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.