422
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Sensor Properties of Silicon Phthalocyanine Axially Substituted with Bis-(Prop-2-Ynyloxy) Groups and Polymeric Phthalocyanines Bearing PEG Substituent by “Click” Chemistry

ORCID Icon, , &
Pages 3278-3290 | Received 28 Sep 2021, Accepted 08 Apr 2022, Published online: 21 Apr 2022

References

  • P. Kaur, R. Sachdeva, R. Singh, N. Soleimanioun, S. Singh, and G. S. S. Saini, “Effect of Asymmetrical Peripheral Substitution of Sulfonic Acid Groupon the Geometric and Electronic Structures and Vibrations of Copperphthalocyanine Studied by Computational and Experimentaltechniques,” Journal of Molecular Structure 1175 (2019): 314–34. doi:10.1016/j.molstruc.2018.07.082.
  • A. V. Yagodin, A. G. Martynov, Y. G. Gorbunova, and A. Y. Tsivadze, “Synthesis, Electronic Structure and NH-Tautomerism of Novel Mono- and Dibenzoannelated Phthalocyanines,” Dyes and Pigments 181 (2020): 108564. doi:10.1016/j.dyepig.2020.108564.
  • D. Lv, H. S. Sung, X. Li, X. Zhang, Z. Li, and D. Chen, “Effects of Single Layer Graphene and Graphene Oxide Modification on the Properties of Phthalocyanine Blue Pigments,” Dyes and Pigments 180 (2020): 108449. doi:10.1016/j.dyepig.2020.108449.
  • M. S. Ağırtaş, “Highly Soluble Phthalocyanines with Hexadeca Tert-Butyl Substituents,” Dyes and Pigments 79 (2008): 247–51.
  • M. S. Ağırtaş, “Synthesis and Characterization of Novel Symmetrical Phthalocyanines Substituted with Four Benzo,” Inorganica Chimica Acta 360, no. 7 (2007): 2499–502. doi:10.1016/j.ica.2006.12.029.
  • K. P. Kabwe, M. Louzada, J. Britton, T. O. Olomola, T. Nyokong, and S. Khene, “Nonlinear Optical Properties of Metal Free and Nickel Binuclearphthalocyanines,” Dyes and Pigments 168 (2019): 347–56. doi:10.1016/j.dyepig.2019.05.003.
  • T. Thiruppathiraja, A. L. Arokiyanathan, B. Aazaad, R. Silviya, S. Lakshmipathi, and H. “OH and COOH Functionalized Magnesiumphthalocyanine as a Catalyst for Oxygen Reductionreaction (ORR)eA DFT Study,” International Journal of Hydrogen Energy 45, no. 15 (2020): 8540–8. doi:10.1016/j.ijhydene.2020.01.079.
  • R. Ghadari, A. Sabri, P. S. Saei, F. T. Kong, and H. M. Marques, “Phthalocyanine-Silver Nanoparticle Structures for Plasmon-Enhanced Dyesensitized Solar Cells,” Solar Energy 198 (2020): 283–94. doi:10.1016/j.solener.2020.01.053.
  • M. S. Ağırtaş, D. Güngördü Solğun, Ü. Yıldıko, and A. Özkartal, “Design of Novel Substituted Phthalocyanines; Synthesis and Fluorescence, DFT, Photovoltaic Properties,” Turkish Journal of Chemistry 44, no. 6 (2020): 1574–86. doi:10.3906/kim-2007-40.
  • S. Kong, X. Wang, L. Bai, Y. Song, and F. Meng, “Multi-Arm Ionic Liquid Crystals Formed by Pyridine-Mesophase Andcopper Phthalocyanine,” Journal of Molecular Liquids 288 (2019): 111012. doi:10.1016/j.molliq.2019.111012.
  • B. R. Sridevi, P. A. Hoskeri, and C. M. Joseph, “Effect of Annealing on the Optical, Structural and Electrochromic Properties of Vacuum Evaporated Manganese Phthalocyanine Thin Films,” Thin Solid Films 723 (2021): 138584. doi:10.1016/j.tsf.2021.138584.
  • K. L. M. Santos, R. M. Barros, D. P. S. Lima, A. M. A. Nunes, M. R. Sato, R. Faccio, B. P. G. L. Damasceno, and J. A. Oshiro-Junior, “Prospective Application of Phthalocyanines in the Photodynamic Therapy against Microorganisms and Tumor Cells: A Mini-Review,” Photodiagnosis and Photodynamic Therapy 32 (2020): 102032. doi:10.1016/j.pdpdt.2020.102032.
  • D. Li, Q. Y. Hu, X. Z. Wang, X. Li, J. Q. Hu, B. Y. Zheng, M. R. Ke, and J. D. Huang, “A Non-Aggregated Silicon(IV) Phthalocyanine-lactose Conjugate for Photodynamic Therapy,” Bioorganic & Medicinal Chemistry Letters 30, no. 12 (2020): 127164. doi:10.1016/j.bmcl.2020.127164.
  • M. S. Ağırtaş, “Fluorescence Properties in Different Solvents and Synthesis of Axially Substituted Silicon Phthalocyanine Bearing Bis-4-Tritylphenoxy Units,” Heterocyclic Communications 26, no. 1 (2020): 130–6. doi:10.1515/hc-2020-0113.
  • S. M. A. Pinto, S. F. F. Almeida, V. A. Tom’e, A. D. Prata, M. J. F. Calvete, C. Serpa, and M. M. Pereira, “Water Soluble near Infrared Dyes Based on PEGylated-Tetrapyrrolic Macrocycles,” Dyes and Pigments 195 (2021): 109677. doi:10.1016/j.dyepig.2021.109677.
  • A. M. Asiri, M. M. Al-Amari, Q. Ullah, and S. A. Khan, “Ultrasound-Assisted Synthesis and Photophysical Investigation of a Heterocyclic Alkylated Chalcone: A Sensitive and Selective Fluorescent Chemosensor for Fe3+ in Aqueous Media,” Journal of Coordination Chemistry 73, no. 20-22 (2020): 2987–3002. doi:10.1080/00958972.2020.1838490.
  • A. M. Asiri, N. S. M. Al-Ghamdi, H. Dzudzevic-Cancar, P. Kumar, and S. A. Khan, “Physicochemical and Photophysical Investigation of Newly Synthesized Carbazole Containing Pyrazoline-Benzothiazole as Fluorescent Chemosensor for the Detection of Cu2+, Fe3+ & Fe2+ Metal Ion,” Journal of Molecular Structure 1195 (2019): 670–80. doi:10.1016/j.molstruc.2019.05.088.
  • S. A. Khan, “Multi-Step Synthesis, Photophysical and Physicochemical Investigation of Novel Pyrazoline a Heterocyclic D- π -a Chromophore as a Fluorescent Chemosensor for the Detection of Fe3+ Metal Ion,” Journal of Molecular Structure 1211 (2020): 128084. doi:10.1016/j.molstruc.2020.128084.
  • S. A. Khan, Q. Ullah, A. S. A. Almalki, S. Kumar, R. J. Obaid, M. A. Alsharif, S. Y. Alfaifi, and A. A. Hashmi, “Synthesis and Photophysical Investigation of (BTHN) Schiff Base as off-on Cd2+ Fluorescent Chemosensor and Its Live Cell Imaging,” Journal of Molecular Liquids 328 (2021): 115407. doi:10.1016/j.molliq.2021.115407.
  • S. A. Khan, Q. Ullah, H. Parveen, S. Mukhtar, K. A. Alzahrani, and M. Asad, “Synthesis and Photophysical Investigation of Novel Imidazole Derivative an Efficient Multimodal Chemosensor for Cu(II) and Fluoride Ions,” Journal of Photochemistry and Photobiology A: Chemistry 406 (2021): 113022. doi:10.1016/j.jphotochem.2020.113022.
  • D. T. Quang, and J. S. Kim, “Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens,” Chemical Reviews 110, no. 10 (2010): 6280–301.
  • B. Cabir, U. Yildiko, and M. S. Ağirtaş, “Synthesis, DFT Analysis, and Electronic Properties of New Phthalocyanines Bearing ETAEO Substituents on Peripheral Position,” Journal of Coordination Chemistry 72, no. 17 (2019): 2997–3011. doi:10.1080/00958972.2019.1680832.
  • M. Syuleyman, I. Angelov, Y. Mitrev, M. Durmuş, and V. Mantareva, “Cationic Amino Acids Linked to Zn(II) Phthalocyanines for Photodynamic Therapy: Synthesis and Effects on Physicochemical Properties,” Journal of Photochemistry and Photobiology A: Chemistry 396 (2020): 112555. doi:10.1016/j.jphotochem.2020.112555.
  • B. D. Zheng, J. Ye, X. Q. Zhang, N. Zhang, and M. T. Xiao, “Recent Advances in Supramolecular Activatable Phthalocyanine-Based Photosensitizers for anti-Cancer Therapy,” Coordination Chemistry Reviews 447 (2021): 214155. doi:10.1016/j.ccr.2021.214155.
  • B. Li, Z. Cui, Y. Han, J. Ding, Z. Jiang, and Y. Zhang, “Novel Axially Substituted Lanthanum Phthalocyanines: Synthesis, Photophysical and Nonlinear Optical Properties,” Dyes and Pigments 179 (2020): 108407. doi:10.1016/j.dyepig.2020.108407.
  • G. Y. Atmaca, “Investigation of Singlet Oxygen Efficiency of di-Axially Substituted Siliconphthalocyanine with Sono-Photochemical and Photochemical Studies,” Polyhedron 193 (2021): 114894.
  • N. Kahriman, Y. Ünver, H. T. Akçay, A. Dakoğlu Gülmez, M. Durmuş, and I. Değirmencioğlu, “Photophysical and Photochemical Study on Novel Axially Chalconesubstituted Silicon (IV) Phthalocyanines,” Journal of Molecular Structure 1200 (2020): 127132. doi:10.1016/j.molstruc.2019.127132.
  • S. Y. Al-Raqa, K. Khezami, E. N. Kaya, and M. Durmuş, “A Novel Water Soluble Axially Substituted Silicon(IV) Phthalocyaninebearing Quaternized 4-(4-Pyridinyl)Phenol Groups: Synthesis,Characterization, Photophysicochemical Properties and BSA/DNAbinding Behavior,” Polyhedron 194 (2021): 114937. doi:10.1016/j.poly.2020.114937.
  • B. Q. Huang, “Polymeric Complex Micelle Loaded with Axially Substitutedsilicon(IV) Phthalocyanine,” Chinese Chemical Letters 20, no. 5 (2009): 627–30. doi:10.1016/j.cclet.2009.01.026.
  • W. Ji, T. X. Wang, X. Ding, S. Lei, and B. H. Han, “Porphyrin- and Phthalocyanine-Based Porous Organic Polymers: From Synthesis to Application,” Coordination Chemistry Reviews 439 (2021): 213875. doi:10.1016/j.ccr.2021.213875.
  • H. Dinçer, H. Mert, B. N. Şen, A. Dağ, and S. Bayraktar, “Synthesis and Characterization of Novel Tetra Terminal Alkynyl-Substituted Phthalocyanines and Their Star Polymers via Click Reaction,” Dyes and Pigments 98, no. 2 (2013): 246–54. doi:10.1016/j.dyepig.2013.02.014.
  • J. Wang, W. Dong, Q. Chen, Z. Si, X. Cui, D. Liu, and Q. Duan, “Syntheses and Nonlinear Optical Behavior of Four-Arm Star-Shaped Phthalocyanine Indium Polymers Containing Azobenzene,” Dyes and Pigments 194 (2021): 109632. doi:10.1016/j.dyepig.2021.109632.
  • Shantharaja, M. Nemakal, Giddaerappa, and L. K. Sannegowda, “Biocompatible Polymeric Pyrazolopyrimidinium Cobalt(II) Phthalocyanine: An Efficient Electroanalytical Platform for the Detection of l-Arginine,” Sensors and Actuators A: Physical 324 (2021): 112690. doi:10.1016/j.sna.2021.112690.
  • M. Raïssi, L. Vignau, E. Cloutet, and B. Ratier, “Soluble Carbon Nanotubes/Phthalocyanines Transparent Electrode and Interconnection Layers for Flexible Inverted Polymer Tandem Solar Cells,” Organic Electronics 21 (2015): 86–91. doi:10.1016/j.orgel.2015.03.003.
  • S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji, and L. Duan, “Conjugated Nickel Phthalocyanine Polymer Selectively Catalyzes CO2-to-CO Conversion in a Wide Operating Potential Window,” Applied Catalysis B: Environmental 284 (2021): 119739. doi:10.1016/j.apcatb.2020.119739.
  • W. Xiao, X. Guan, B. Huang, Q. Ye, T. Zhang, K. Chen, Y. Peng, and F. Fu, “Fluorinated Dendritic Silicon (IV) Phthalocyanines Nanoparticles: Synthesis, Photoinduced Intramolecular Energy Transfer and DNA Interaction,” Dyes and Pigments 186 (2021): 109013. doi:10.1016/j.dyepig.2020.109013.
  • G. Singh, Sushma Priyanka, Suman Diksha, J. D. Kaur, A. Saini, A. Devi, and P. Satij, “Synthesis, Characterization and UV–Visible Study of Schiff Base-Acetylene Functionalized Organosilatrane Receptor for the Dual Detection of Zn2+ and Co2+ Ions,” Inorganica Chimica Acta 525 (2021): 120465. doi:10.1016/j.ica.2021.120465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.