114
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

6-Amino-2-(4-fluorophenyl)-4-(trifluoromethyl)quinoline: Insight into the Crystal Structure, Hirshfeld Surface Analysis and Computational Study

&
Pages 3324-3341 | Received 23 Nov 2021, Accepted 10 Apr 2022, Published online: 16 May 2022

References

  • O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, and S. Bawa, “A Review on Anticancer Potential of Bioactive Heterocycle Quinoline,” European Journal of Medicinal Chemistry 97 (2015): 871–910. doi:10.1016/j.ejmech.2014.07.044.
  • Jane Achan, Ambrose O. Talisuna, Annette Erhart, Adoke Yeka, James K. Tibenderana, Frederick N. Baliraine, Philip J. Rosenthal, and Umberto D'Alessandro, “Quinine, an Old anti-Malarial Drug in a Modern World: Role in the Treatment of Malaria,” Malaria Journal 10 (2011): 144. doi:10.1186/1475-2875-10-144.
  • E. L. Luzina, and A. V. Popov, “Synthesis, Evaluation of Anticancer Activity and COMPARE Analysis of N-Bis(Trifluoromethyl)alkyl-N'-Substituted Ureas with Pharmacophoric Moieties,” European Journal of Medicinal Chemistry 53 (2012): 364–73. doi:10.1016/j.ejmech.2012.03.026.
  • R. K. Shandil, R. Jayaram, P. Kaur, S. Gaonkar, B. L. Suresh, B. N. Mahesh, R. Jayashree, V. Nandi, S. Bharath, and V. Balasubramanian, “Moxifloxacin, Ofloxacin, Sparfloxacin, and Ciprofloxacin against Mycobacterium tuberculosis: Evaluation of in Vitro and Pharmacodynamic Indices That Best Predict in Vivo Efficacy,” Antimicrobial Agents and Chemotherapy 51, no. 2 (2007): 576–82. doi:10.1128/AAC.00414-06.
  • M. S. T. Makki, D. A. Bakhotmah, and R. M. Abdel-Rahman, “Highly Efficient Synthesis of Novel Fluorine Bearing Quinoline-4-Carboxylic Acid and the Related Compounds as Amylolytic Agents,” International Journal of Organic Chemistry 02, no. 01 (2012): 49–55. doi:10.4236/ijoc.2012.21009.
  • Y. G. Kappenberg, A. Ketzer, F. S. Stefanello, P. R. S. Salbego, T. V. Acunha, B. L. Abbadi, C. V. Bizarro, L. A. Basso, P. Machado, M. A. P. Martins, et al, “Synthesis and Photophysical, Thermal and Antimycobacterial Properties of Novel 6-Amino-2-Alkyl(Aryl/Heteroaryl)-4-(Trifluoromethyl) Quinolines,” New Journal of Chemistry 43, no. 31 (2019): 12375–84. doi:10.1039/C9NJ01681C.
  • M. Khalid, A. Ali, R. Jawaria, M. A. Asghar, S. Asim, M. U. Khan, R. Hussain, M. F. Ur Rehman, C. J. Ennis, and M. S. Akram, “First Principles Study of Electronic and Nonlinear Optical Properties of a–D–π–a and D–a–D–π–a Configured Compounds Containing Novel Quinoline–Carbazole Derivatives,” RSC Advances 10, no. 37 (2020): 22273–83. doi:10.1039/D0RA02857F.
  • G. Lewińska, K. Khachatryan, K. S. Danel, Z. Danel, J. Sanetra, and K. W. Marszałek, “Investigations of the Optical and Thermal Properties of the Pyrazoloquinoline Derivatives and Their Application for OLED Design,” Polymers 12, no. 11 (2020): 2707. doi:10.3390/polym12112707.
  • N. Pandey, M. S. Mehata, S. Pant, and N. Tewari, “Structural, Electronic and NLO Properties of 6-Aminoquinoline: A DFT/TD-DFT Study,” Journal of Fluorescence 31, no. 6 (2021): 1719–29. doi:10.1007/s10895-021-02788-z.
  • A. Marella, O. P. Tanwar, R. Saha, M. R. Ali, S. Srivastava, M. Akhter, M. Shaquiquzzaman, and M. M. Alam, “Quinoline: A Versatile Heterocyclic,” Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society 21, no. 1 (2013): 1–12. doi:10.1016/j.jsps.2012.03.002.
  • B. Ay, O. Şahin, B. S. Demir, Y. Saygideger, J. M. López-de-Luzuriaga, G. Mahmoudi, and D. A. Safin, “Antitumor Effects of Novel Nickel–Hydrazone Complexes in Lung Cancer Cells,” New Journal of Chemistry 44, no. 21 (2020): 9064–72. doi:10.1039/D0NJ00921K.
  • B. S. Demir, G. Mahmoudi, A. Sezan, E. Derinöz, E. Nas, Y. Saygideger, F. I. Zubkov, E. Zangrando, and D. A. Safin, “Evaluation of the Antitumor Activity of a Series of the Pincer-Type Metallocomplexes Produced from Isonicotinohydrazide Derivative,” Journal of Inorganic Biochemistry 223 (2021): 111525. doi:10.1016/j.jinorgbio.2021.111525.
  • M. G. Babashkina, A. Frontera, A. V. Kertman, Y. Saygideger, S. Murugavel, and D. A. Safin, “Favipiravir: Insight into the Crystal Structure, Hirshfeld Surface Analysis and Computational Study,” Journal of the Iranian Chemical Society 19, no. 1 (2022): 85–94. doi:10.1007/s13738-021-02285-x.
  • C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, “ The Cambridge Structural Database,” Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials 72, no. Pt 2 (2016): 171–9. doi:10.1107/S2052520616003954.
  • M. A. Spackman, and D. Jayatilaka, “Hirshfeld Surface Analysis,” CrystEngComm 11, no. 1 (2009): 19–32. doi:10.1039/B818330A.
  • M. A. Spackman, and J. J. McKinnon, “Fingerprinting Intermolecular Interactions in Molecular Crystals,” CrystEngComm 4, no. 66 (2002): 378–92. doi:10.1039/B203191B.
  • M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, “CrystalExplorer17” (University of Western Australia, 2017). http://hirshfeldsurface.net.
  • C. Jelsch, K. Ejsmont, and L. Huder, “The Enrichment Ratio of Atomic Contacts in Crystals, an Indicator Derived from the Hirshfeld Surface Analysis,” IUCrJ 1, no. Pt 2 (2014): 119–28. doi:10.1107/S2052252514003327.
  • R. Dennington, T. A. Keith, and J. M. Millam, “GaussView, Version 6.0” (Semichem Inc., Shawnee Mission, KS, 2016).
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, “Gaussian 09, Revision D.01” (2016).
  • R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, “Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” The Journal of Chemical Physics 72, no. 1 (1980): 650–4. doi:10.1063/1.438955.
  • A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–52. doi:10.1063/1.464913.
  • M. J. Frisch, J. A. Pople, and J. S. Binkley, “Self‐Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets,” The Journal of Chemical Physics 80, no. 7 (1984): 3265–9. doi:10.1063/1.447079.
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7 (2017): 42717. doi:10.1038/srep42717.
  • Antoine Daina, and Vincent Zoete, “A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules,” Chemmedchem 11, no. 11 (2016): 1117–21. doi:10.1002/cmdc.201600182.
  • P. Banerjee, A. O. Eckert, A. K. Schrey, and R. Preissner, “ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals,” Nucleic Acids Research 46, NO. W1 (2018): W257–w263. doi:10.1093/nar/gky318.
  • A. Mukherjee, S. Tothadi, and G. R. Desiraju, “Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different,” Accounts of Chemical Research 47, no. 8 (2014): 2514–24. doi:10.1021/ar5001555.
  • C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, “CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems,” IUCrJ 4, no. Pt 5 (2017): 575–87. doi:10.1107/S205225251700848X.
  • P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual Density Functional Theory,” Chemical Reviews 103, no. 5 (2003): 1793–874. doi:10.1021/cr990029p.
  • J. P. Abraham, D. Sajan, I. H. Joe, and V. S. Jayakumar, “Molecular Structure, Spectroscopic Studies and First-Order Molecular Hyperpolarizabilities of p-Amino Acetanilide,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 71, no. 2 (2008): 355–67. doi:10.1016/j.saa.2008.01.010.
  • P. Karamanis, C. Pouchan, and G. Maroulis, “Structure, Stability, Dipole Polarizability and Differential Polarizability in Small Gallium Arsenide Clusters from All-Electron ab Initio and Density-Functional-Theory Calculations,” Physical Review A 77, no. 1 (2008): 013201–3. doi:10.1103/PhysRevA.77.013201.
  • A. Eşme, and S. G. Sağdınç, “Spectroscopic (FT–IR, FT–Raman, UV–Vis) Analysis, Conformational, HOMO-LUMO, NBO and NLO Calculations on Monomeric and Dimeric Structures of 4–Pyridazinecarboxylic Acid by HF and DFT Methods,” Journal of Molecular Structure 1147 (2017): 322–34. doi:10.1016/j.molstruc.2017.06.110.
  • J. Fan, and I. A. M. de Lannoy, “Pharmacokinetics,” Biochemical Pharmacology 87, no. 1 (2014): 93–120. doi:10.1016/j.bcp.2013.09.007.
  • H. Yang, L. Sun, W. Li, G. Liu, and Y. Tang, “In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts,” Frontiers in Chemistry 6 (2018): 30. doi:10.3389/fchem.2018.00030.
  • G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Lowe, and E. L. Barker, “Computational Methods in Drug Discovery,” Pharmacological Reviews 66, no. 1 (2014): 334–95. doi:10.1124/pr.112.007336.
  • L. L. G. Ferreira, and A. D. Andricopulo, “ADMET Modeling Approaches in Drug Discovery,” Drug Discovery Today 24, no. 5 (2019): 1157–65. doi:10.1016/j.drudis.2019.03.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.