315
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

New 1,2,3‐Triazole‐Tethered Thiazolidinedione Derivatives: Synthesis, Bioevaluation and Molecular Docking Study

ORCID Icon, , , , , ORCID Icon & show all
Pages 3353-3379 | Received 18 Jan 2022, Accepted 11 Apr 2022, Published online: 01 May 2022

References

  • A. K. Jain, A. Vaidya, V. Ravichandran, S. K. Kashaw, and R. M. Agrawal, “Recent Developments and Biological Activities of Thiazolidinone Derivatives: A Review,” Bioorganic & Medicinal Chemistry 20, no. 11 (2012): 3378–95. doi:10.1016/j.bmc.2012.03.069.
  • (a) J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkinson, T. M. Wilson, and S. A. Kliewer, “An Antidiabetic Thiazolidinedione is a High Affinity Ligand for Peroxisome Proliferator-Activated Receptor γ (PPARγ),” Journal of Bioorganic Chemistry 270 (1995): 12953–6; (b) R. Da Ros, R. Assaloni, and, A. Ceriello, “The Preventive Antioxidant Action of Thiazolidinediones: A New Therapeutic Prospect in Diabetes and Insulin Resistance,” Diabetic Medicine 21 (2004): 1249–52.
  • (a) S. Kitamura, Y. Miyazaki, Y. Shinomura, S. Kondo, S. Kanayama, and Y. Matsuzawa, “Peroxisome Proliferator-Activated Receptor Gamma Induces Growth Arrest and Differentiation Markers of Human Colon Cancer Cells,” Japanese Journal of Cancer Research GANN 96 (1999): 75–80. 90; (b) M. Li, T. W. Lee, T. S. Mok, T. D. Warner, A. P. Yim, and G. G. Chen, “Activation of Peroxisome Proliferator-Activated Receptor-Gamma by Troglitazone (TGZ) Inhibits Human Lung Cell Growth,” Journal of Cellular Biochemistry (2005): 760–74; (c) C. W. Shiau, C. C. Yang, S. K. Kulp, K. F. Chen, C. S. Chen, J. W. Huang, and, and C. S. Chen, “Thiazolidenediones Mediate Apoptosis in Prostate Cancer Cells in Part through Inhibition of Bcl-xL/Bcl-2 Functions Independently of PPAR Gamma,” Cancer Research 65 (2005):1561–9.
  • B. D. Oya, O. Ozen, M. Arzu, A. Nurten, A. Onur, K. Engin, and E. Rahmiye, “Synthesis and Antimicrobial Activity of Some New Thiazolyl Thiazolidine-2,4-Dione Derivative,” Bioorganic Medicinal Chemistry 15 (2007): 6012–7.
  • (a) G. Bruno, L. Costantino, C. Curinga, R. Maccari, F. Monforte, F. Nicolò, R. Ottanà, and M. G. Vigorita, “Recent Studies of Aldose Reductase Enzyme Inhibition for Diabetic Complications,” Bioorganic & Medicinal Chemistry 10, no. 4 (2002): 1077–352. doi:10.1016/S0968-0896(01)00366-2.
  • (a) V. V. Mulwad, A. A. Mir, and H. T. Parmar, “Synthesis and Antimicrobial Screening of 5-Benzylidene-2-Imino-3-(2-Oxo-2H-Benzopyran-6-yl-)Thiazolidine-4-One and Its Derivatives,” Indian Journal of Chemistry 48B (2009): 137–141; (b) K. R. Alagawadi, and S. G. Alegaon, “Synthesis, Characterization and Antimicrobial Activity Evaluation of New 2,4-Thiazolidinediones Bearing Imidazo[2,1-b][1,3,4]Thiadiazole Moiety,” Arabian Journal Chemistry 4 (2011): 465–72
  • S. Rekha, U. Shantharam, and V. Chandy, “Synthesis and Evaluation of Novel Thiazolidinedione for anti-Inflammatory Activity,” International Research Journal of Pharmacy 2 (2011): 81–4.
  • F. Herrera, J. C. Mayo, V. Martin, R. M. Sainz, I. Antolin, and C. Rodriguez, “Cytotoxicity and Oncostatic Activity of the Thiazolidinedione Derivative CGP 52608 on central nervous system cancer cells,” Cancer Letters 211, no. 1 (2004): 47–55. doi:10.1016/j.canlet.2004.03.036.
  • Y. Chinthala, A. Kumar, Domatti, A. Sarfaraz, S. P. Singh, N. K. Arigari, N. Gupta, S. K. V. N. Satya, J. K. Kumar, F. Khan, A. K. Tiwari, et al, “Synthesis, Biological Evaluation and Molecular Modeling Studies of Some Novel Thiazolidinediones with Triazole Ring,” European Journal of Medicinal Chemistry 70 (2013): 308–14. doi:10.1016/j.ejmech.2013.10.005.
  • A. Verma, and S. K. Saraf, “4-thiazolidinone-a biologically active scaffold,” European Journal of Medicinal Chemistry 43, no. 5 (2008): 897–905. doi:10.1016/j.ejmech.2007.07.017.
  • M. Ricote, A. C. Li, T. M. Willson, J. Kelly, and C. K. Glass, “The Peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation,” Nature 391, no. 6662 (1998): 79–82. doi:10.1038/34178.
  • (a) T. M. Willson, and W. Wahli, “Peroxisome Proliferator-Activated Receptor Agonists,” Current Opinion in Chemical Biology 1, no. 2 (1997): 235–241; (b) R. A. Komers, and, and A. Vrana, “Thiazolidinediones-Tools for the Research of Metabolic Syndrome X,” Physiological Research 47 (1998):215–25. doi:10.1016/s1367-5931(97)80015-4.
  • P. Delerive, J. C. Fruchart, and B. Staels, “Peroxisome Proliferator-Activated Receptors in Inflammation Control,” The Journal of Endocrinology 169, no. 3 (2001): 453–9. doi:10.1677/joe.0.1690453.
  • S. R. Maxwell, “Prospects for the Use of Antioxidant Therapies,” Drugs 49, no. 3 (1995): 345–61. doi:10.2165/00003495-199549030-00003.
  • K. Bedard, and K. H. Krause, “The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology,” Physiological Reviews 87, no. 1 (2007): 245–313. doi:10.1152/physrev.00044.2005.
  • M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser, “Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease,” The International Journal of Biochemistry & Cell Biology 39, no. 1 (2007): 44–87. doi:10.1016/j.biocel.2006.07.001.
  • (a) M. D. Stringer, P. G. Gorog, A. Freeman, and V. V. Kakkar, “Lipid Peroxides and Atherosclerosis,” BMJ (Clinical Research ed.) 298, no. 6669 (1989): 281–4; (b) R. J. Perry, P. Watson, and, J. R. Hodges, “The Nature and Staging of Attention Dysfunction in Early (Minimal and Mild) Alzheimer’s Disease: Relationship to Episodic and Semantic Memory Impairment,” Neurophychologia 38 (2000): 252–71. doi:10.1136/bmj.298.6669.281.
  • (a) B. Halliwell, and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed. (Oxford University Press, USA, 1992); (b) C. P. Rajneesh, A. Manimaran, K. R. Sasikala, and P. Adikappan, “Lipid peroxidation and antioxidant status in patients with breast cancer,” Singapore Medicinal Journal 49 (2008):640–3.
  • A. A. Andreadis, S. L. Hazen, S. A. Comhair, and S. C. Erzurum, “Oxidative and Nitrosative Events in Asthma,” Free Radical Biology & Medicine 35, no. 3 (2003): 213–25. doi:10.1016/S0891-5849(03)00278-8.
  • S. B. Abramson, A. R. Amin, R. M. Clancy, and M. Attur, “The Role of Nitric Oxide in Tissue Destruction,” Best Practice & Research. Clinical Rheumatology 15, no. 5 (2001): 831–45. doi:10.1053/berh.2001.0196.
  • J. M. McCord, “Oxygen-Derived Free Radicals in Postischemic Tissue Injury,” The New England Journal of Medicine 312, no. 3 (1985): 159–63. doi:10.1056/NEJM198501173120305.
  • G. B. Bulkley, “Free Radicals and Other Reactive Oxygen Metabolites: Clinical Relevance and the Therapeutic Efficacy of Antioxidant Therapy,” Surgery 113 (1993): 479–83.
  • N. Sreejayan, and M. N. Rao, “Free Radical Scavenging Activity of Curcuminoids,” Arzneimittel-Forschung 46, no. 2 (1996): 169–71.
  • M. H. Shaikh, D. D. Subhedar, V. M. Khedkar, P. C. Jha, F. A. K. Khan, J. N. Sangshetti, and B. B. Shingate, “1, 2, 3-Triazole Tethered Acetophenones: Synthesis, Bioevaluation and Molecular Docking Study,” Chinese Chemical Letters 27, no. 7 (2016): 1058–63. doi:10.1016/j.cclet.2016.03.014.
  • M. H. Shaikh, D. D. Subhedar, M. Arkile, V. M. Khedkar, N. Jadhav, D. Sarkar, and B. B. Shingate, “Synthesis and Bioactivity of Novel Triazole Incorporated Benzothiazinone Derivatives as Antitubercular and Antioxidant Agent,” Bioorganic & Medicinal Chemistry Letters 26, no. 2 (2016): 561–9. doi:10.1016/j.bmcl.2015.11.071.
  • N. Boechat, V. F. Ferreira, S. B. Ferreira, M. L. G. Ferreira, F. C. da Silva, M. M. Bastos, M. S. Costa, M. C. S. Lourenco, A. C. Pinto, A. U. Krettli, et al, “Novel 1,2,3-Triazole Derivatives for Use against Mycobacterium tuberculosis H37Rv (ATCC 27294) Strain,” Journal of Medicinal Chemistry 54, no. 17 (2011): 5988–99. doi:10.1021/jm2003624.
  • (a) R. Kharb, P. C. Sharma, and M. S. Yar, “Pharmacological Significance of Triazole Scaffold,” Journal of Enzyme Inhibition and Medicinal Chemistry 26, no. 1 (2011): 1–21; (b) L. S. Feng, M. J. Zheng, F. Zhao, and D. Liu, “1,2,3-Triazole Hybrids with anti-HIV-1 Activity,” Archiv Der Pharmazie 354 (2021):e2000163. doi:10.3109/14756360903524304.
  • M. H. Shaikh, D. D. Subhedar, B. B. Shingate, F. A. K. Khan, J. N. Khan, V. M. Khedkar, L. Nawale, D. Sarkar, G. R. Navale, and S. S. Shinde, “Synthesis, Biological Evaluation and Molecular Docking of Novel Coumarin Incorporated Triazoles as Antitubercular, Antioxidant and Antimicrobial Agents,” Medicinal Chemistry Research 25, no. 4 (2016): 790–804. doi:10.1007/s00044-016-1519-9.
  • R. J. Bochis, J. C. Chabala, E. Harris, L. H. Peterson, L. Barash, T. Beattie, J. E. Brown, D. W. Graham, F. S. Waksmunski, M. Tischler, et al, “Benzylated 1,2,3-Triazoles as Anticoccidiostats,” Journal of Medicinal Chemistry 34, no. 9 (1991): 2843–52. doi:10.1021/jm00113a024.
  • J. L. Kelley, C. S. Koble, R. G. Davis, E. W. Mc Lean, F. E. Soroko, and B. R. Cooper, “1-(Fluorobenzyl)-4-Amino-1H-1,2,3-Triazolo[4,5-c]Pyridines: Synthesis and Anticonvulsant Activity,” Journal of Medicinal Chemistry 38, no. 20 (1995): 4131–4. doi:10.1021/jm00020a030.
  • R. Raj, P. Singh, P. Singh, J. Gut, P. J. Rosenthal, and V. Kumar, “Azide-Alkyne Cycloaddition en Route to 1H-1,2,3-Triazole-Tethered 7-Chloroquinoline-Isatin Chimeras: synthesis and Antimalarial Evaluation,” European Journal of Medicinal Chemistry 62 (2013): 590–6. doi:10.1016/j.ejmech.2013.01.032.
  • Alessandro K. Jordão, Priscila P. Afonso, Vitor F. Ferreira, Maria C. B. V. de Souza, Maria C. B. Almeida, Cristiana O. Beltrame, Daniel P. Paiva, Solange M. S. V. Wardell, James L. Wardell, Edward R. T. Tiekink, et al, “Antiviral Evaluation of N-Amino-1,2,3-Triazoles against Cantagalo Virus Replication in Cell Culture,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3777–83., doi:10.1016/j.ejmech.2009.04.046.
  • B. L. Wilkinson, H. Long, E. Sim, and A. J. Fairbanks, “Synthesis of Arabino Glycosyl Triazoles as Potential Inhibitors of Mycobacterial Cell Wall Biosynthesis,” Bioorganic & Medicinal Chemistry Letters 18, no. 23 (2008): 6265–7. doi:10.1016/j.bmcl.2008.09.082.
  • S. M. Gomha, S. A. Ahmed, and A. O. Abdelhamid, “Synthesis and Cytotoxicity Evaluation of Some Novel Thiazoles, Thiadiazoles, and Pyrido[2,3-d][1,2,4]Triazolo[4,3-a]Pyrimidin-5(1H)-ones Incorporating Triazole Moiety,” Molecules (Basel, Switzerland) 20, no. 1 (2015): 1357–76. doi:10.3390/molecules20011357.
  • H. R. M. Rashdan, S. M. Gomha, M. S. El-Gendey, M. A. El-Hashash, and A. M. M. Soliman, “Eco-Friendly One-Pot Synthesis of Some New Pyrazolo[1,2-b]Phthalazinediones with Antiproliferative Efficacy on Human Hepatic Cancer Cell Lines,” Green Chemistry Letters and Reviews 11, no. 3 (2018): 264–74. doi:10.1080/17518253.2018.1474270.
  • E. M. H. Abbas, S. M. Gomha, and T. A. Farghaly, “Multicomponent Reactions for Synthesis of Bioactive Polyheterocyclic Ring Systems under Controlled Microwave Irradiation,” Arabian Journal of Chemistry 7, no. 5 (2014): 623–9. doi:10.1016/j.arabjc.2013.11.036.
  • K. D. Khalil, S. M. Riyadh, S. M. Gomha, and I. Ali, “Synthesis, Characterization and Application of Copper Oxide Chitosan Nanocomposite for Green Regioselective Synthesis of [1,2,3]Triazoles,” International Journal of Biological Macromolecules 130 (2019): 928–37. doi:10.1016/j.ijbiomac.2019.03.019.
  • M. Kume, T. Kubota, Y. Kimura, H. Nakashimizu, K. Motokawa, and M. Nakano, “Orally Active cephalosporins. II. Synthesis and structure-activity relationships of new 7 beta-[(Z)-2-(2-Aminothiazol-4-yl)-2-Hydroxyiminoacetamido]-Cephalospori ns with 1,2,3-Triazole in C-3 Side Chain,” The Journal of Antibiotics 46, no. 1 (1993): 177–92. doi:10.7164/antibiotics.46.177.
  • C. D. Barros, A. A. Amato, T. B. de Oliveira, K. B. R. Iannini, A. L. da Silva, T. G. da Silva, E. S. Leite, M. Z. Hernandes, M. C. A. de Lima, S. L. Galdino, et al, “Synthesis and Anti-inflammatory Activity of New Arylidene-Thiazolidine-2,4-Diones as PPAR Gamma Ligands,” Bioorganic & Medicinal Chemistry 18, no. 11 (2010): 3805–11. doi:10.1016/j.bmc.2010.04.045.
  • A. K. M. Iqbal, A. Y. Khan, M. B. Kalashetti, N. S. Belavagi, Y. D. Gong, and I. A. M. Khazi, “Synthesis, Hypoglycemic and Hypolipidemic Activities of Novel Thiazolidinedione Derivatives Containing Thiazole/Triazole/Oxadiazole Ring,” European Journal of Medicinal Chemistry 53 (2012): 308–15. doi:10.1016/j.ejmech.2012.04.015.
  • (a) J. Sindhu, H. Singh, J. M. Khurana, C. Sharma, and K. R. Aneja, “Multicomponent Domino Process for the Synthesis of Some Novel 5-(Arylidene)-3-((1-Aryl-1H-1,2,3-Triazol-4-yl)Methyl)-Thiazolidine-2,4-Diones Using PEG-400 as an Efficient Reaction Medium and Their Antimicrobial Evaluation,” Chinese Chemical Letters 26, no. 1 (2015): 50–54; (b) S. Wu, Y. Zhang, X. He, X. Che, S. Wang, Y. Liu, Y. Jiang, N. Liu, G. Dong, J. Yao, Z. Miao, Y. Wang, W. Zhang, and C. Sheng, “From Antidiabetic to Antifungal: Discovery of Highly Potent Triazole-Thiazolidinedione Hybrids as Novel Antifungal Agents,” ChemMedChem 9 (2014): 2639–46. doi:10.1016/j.cclet.2014.09.006.
  • (a) M. H. Shaikh, D. D. Subhedar, S. V. Akolkar, A. A. Nagargoje, V. M. Khedkar, D. Sarkar, B. B. Shingate, “Tetrazoloquinoline-1,2,3-Triazole Derivatives as Antimicrobial Agents: Synthesis, Biological Evaluation and Molecular Docking Study,” Polycyclic Aromatic Compounds. doi:10.1080/10406638.2020.1821229 ; (b) M. H. Shaikh, D. D. Subhedar, M. Arkile, M. A. Yeware, F. A. K. Khan, J. N. Sangshetti, and B. B. Shingate, “Novel Benzylidenehydrazide-1, 2, 3-Triazole Conjugates as Antitubercular Agents: Synthesis and Molecular Docking,”Mini-Reviews in Medicinal Chemistry 19 (2019): 1178–1194; (c) D. D. Subhedar, M. H. Shaikh, A. A. Nagargoje, S. V. Akolkar, S. G. Bhansali, D. Sarkar, and B. B. Shingate, “Amide-Linked Monocarbonyl Curcumin Analogues: Efficient Synthesis, Antitubercular Activity and Molecular Docking Study,” Polycyclic Aromatic Compounds https://doi.org/10.1080/10406638.2020.1852288; (d) S. V. Akolkar, A. A. Nagargoje, M. H. Shaikh, M. Z. A. Warshagha, J. N. Sangshetti, M. G. Damale, and B. B. Shingate, “New N‐Phenylacetamide‐Linked 1,2,3‐Triazole‐Tethered Coumarin Conjugates: Synthesis, Bioevaluation, and Molecular Docking Study,” Archiv Der Pharmazie 353 (2020):200016.
  • P. Ertl, B. Rohde, and P. Selzer, “Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties,” Journal of Medicinal Chemistry 43, no. 20 (2000): 3714–7. doi:10.1021/jm000942e.
  • H. Nadia Metwally, N. M. Rateb, and H. F. Zohdi, “A Simple and Green Procedure for the Synthesis of 5-Arylidene-4-Thiazolidinones by Grinding,” Green Chemistry Letters and Reviews 4, no. 3 (2011): 225–8. doi:10.1080/17518253.2010.544330.
  • J. Mahimaidoss, C. Antony, and A. R. Vincent, “Phytochemical Screening and Bioactivity Studies of Phyllanthus Wightianus,” Journal of Pharmacy Research 6, no. 1 (2013): 188–92. doi:10.1016/j.jopr.2012.11.039.
  • M. Burits, and F. Bucar, “Antioxidant Activity of Nigella Sativa Essential Oil,” Phytotherapy Research 14, no. 5 (2000): 323–8. doi:10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q.
  • (a) R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and P. S. Shenkin, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” Journal of Medicinal Chemistry 47 (2004):1739–49; (b) R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin and D. T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes,” Journal of Medicinal Chemistry 49 (2006):6177–96; (c) T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard and J. L. Banks, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry 47 (2004):1750–9.
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 46, no. 1–3 (2001): 3–26.
  • Molinspiration Chemoinformatics Brastislava, Slovak Republic, Available from: http://www.molinspiration.com/cgi-bin/properties, 2014.
  • Yuan H. Zhao, Michael H. Abraham, Joelle Le, Anne Hersey, Chris N. Luscombe, Gordon Beck, Brad Sherborne, and Ian Cooper, “Rate Limited Steps of Human Oral Absorption and QSAR Studies,” Pharmaceutical Research 19, no. 10 (2002): 1446–57. doi:10.1023/A:1020444330011.
  • Drug-likeness and molecular property prediction, Available from: http://www.molsoft.com/mprop/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.