289
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Antimicrobial Evaluation, and Molecular Docking of New Azole, Azine, Thiazole, and Chromene Derivatives

ORCID Icon, , , &
Pages 3429-3449 | Received 04 Nov 2021, Accepted 14 Apr 2022, Published online: 24 May 2022

References

  • Rasha A. Azzam, Galal H. Elgemeie, and Rokia R. Osman, “Synthesis of Novel Pyrido[2,1-b]Benzothiazole and N-Substituted 2-Pyridylbenzothiazole Derivatives Showing Remarkable Fluorescence and Biological Activities,” Journal of Molecular Structure 1201 (2020): 127194. doi:10.1016/j.molstruc.2019.127194.
  • Xu Tang, Zhongbo Wang, Xinmin Zhong, Xiaobin Wang, Lijuan Chen, Ming He, and Wei Xue, “Synthesis and Biological Activities of Benzothiazole Derivatives Bearing a 1,3,4-Thiadiazole Moiety,” Phosphorus, Sulfur, and Silicon and the Related Elements 194, no. 3 (2019): 241–8. doi:10.1080/10426507.2018.1539992.
  • Virendra R. Mishra, Chaitannya W. Ghanavatkar, Suraj N. Mali, Shahnawaz I. Qureshi, Hemchandra K. Chaudhari, and Nagaiyan Sekar, “Design, Synthesis, Antimicrobial Activity and Computational Studies of Novel Azo Linked Substituted Benzimidazole, Benzoxazole and Benzothiazole Derivatives,” Computational Biology and Chemistry 78 (2019): 330–7. doi:10.1016/j.compbiolchem.2019.01.003.
  • Ali Irfan, Fozia Batool, Syeda Andleeb Zahra Naqvi, Amjad Islam, Sameh M. Osman, Alessio Nocentini, Siham A. Alissa, and Claudiu T. Supuran, “Benzothiazole Derivatives as Anticancer Agents,” Journal of Enzyme Inhibition and Medicinal Chemistry 35, no. 1 (2020): 265–79. doi:10.1080/14756366.2019.1698036.
  • Faisal Al-Otaibi, “An Overview of Structurally Diversified Anticonvulsant Agents,” Acta Pharmaceutica (Zagreb, Croatia) 69, no. 3 (2019): 321–44. doi:10.2478/acph-2019-0023.
  • Rasha A. Azzam, Rokia R. Osman, and Galal H. Elgemeie, “Efficient Synthesis and Docking Studies of Novel Benzothiazole-Based Pyrimidinesulfonamide Scaffolds as New Antiviral Agents and Hsp90α Inhibitors,” ACS Omega 5, no. 3 (2020): 1640–55. doi:10.1021/acsomega.9b03706.
  • Katharigatta N. Venugopala, Mohammed A. Khedr, Melendhran Pillay, Susanta K. Nayak, Sandeep Chandrashekharappa, Bandar E. Aldhubiab, Sree Harsha, Mahesh Attimard, and Bharti Odhav, “Benzothiazole Analogs as Potential Anti-TB Agents: Computational Input and Molecular Dynamics,” Journal of Biomolecular Structure & Dynamics 37, no. 7 (2019): 1830–42. doi:10.1080/07391102.2018.1470035.
  • Sana Tariq, Payal Kamboj, and Mohammad Amir, “Therapeutic Advancement of Benzothiazole Derivatives in the Last Decennial Period,” Archiv der Pharmazie 352, no. 1 (2018): 1800170. doi:10.1002/ardp.201800170.
  • Zeel A. Bhavsar, Prachi T. Acharya, Divya J. Jethava, and Hitesh D. Patel, “Recent Advances in Development of Anthelmintic Agents: Synthesis and Biological Screening,” Synthetic Communications 50, no. 7 (2020): 917–46. doi:10.1080/00397911.2019.1695276.
  • David Izuchukwu Ugwu, Uchechukwu Christopher Okoro, Pius Onyeoziri Ukoha, Astha Gupta, and Sunday N. Okafor, “Novel Anti-Inflammatory and Analgesic Agents: Synthesis, Molecular Docking and In Vivo Studies,” Journal of Enzyme Inhibition and Medicinal Chemistry 33, no. 1 (2018): 405–15. doi:10.1080/14756366.2018.1426573.
  • Aya E. Ghonim, Alessia Ligresti, Alessandro Rabbito, Ali Mokhtar Mahmoud, Vincenzo Di Marzo, Noha A. Osman, and Ashraf H. Abadi, “Structure–Activity Relationships of Thiazole and Benzothiazole Derivatives as Selective Cannabinoid CB2 Agonists with In Vivo Anti-Inflammatory Properties,” European Journal of Medicinal Chemistry 180 (2019): 154–70. doi:10.1016/j.ejmech.2019.07.002.
  • Rubina Bhutani, Dharam Pal Pathak, Garima Kapoor, Asif Husain, and Md Azhar Iqbal, “Novel Hybrids of Benzothiazole-1,3,4-Oxadiazole-4-Thiazolidinone: Synthesis, In Silico ADME Study, Molecular Docking and In Vivo Anti-Diabetic Assessment,” Bioorganic Chemistry 83 (2019): 6–19. doi:10.1016/j.bioorg.2018.10.025.
  • María Sol Ballari, Natividad Herrera Cano, Daniel A. Wunderlin, Gabriela E. Feresin, and Ana N. Santiago, “One-Pot Sequential Synthesis and Antifungal Activity of 2-(Benzylsulfonyl) Benzothiazole Derivatives,” RSC Advances 9, no. 50 (2019): 29405–13. doi:10.1039/C9RA04488D.
  • Mohammed Gollapalli, Muhammad Taha, Muhammad Tariq Javid, Noor Barak Almandil, Fazal Rahim, Abdul Wadood, Ashik Mosaddik, Mohamed Ibrahim, Mohammed A. Alqahtani, and Yasser A. Bamarouf, “Synthesis of Benzothiazole Derivatives as a Potent α-Glucosidase Inhibitor,” Bioorganic Chemistry 85 (2019): 33–48. doi:10.1016/j.bioorg.2018.12.021.
  • Gjermund Henriksen, Andrea I. Hauser, Andrew D. Westwell, Behrooz H. Yousefi, Markus Schwaiger, Alexander Drzezga, and Hans-Jürgen Wester, “Metabolically Stabilized Benzothiazoles for Imaging of Amyloid Plaques,” Journal of Medicinal Chemistry 50, no. 6 (2007): 1087–9. doi:10.1021/jm061466g.
  • Chester A. Mathis, Yanming Wang, Daniel P. Holt, Guo-Feng Huang, Manik L. Debnath, and William E. Klunk, “Synthesis and Evaluation of 11C-Labeled 6-Substituted 2-Arylbenzothiazoles as Amyloid Imaging Agents,” Journal of Medicinal Chemistry 46, no. 13 (2003): 2740–54. doi:10.1021/jm030026b.
  • Takahiro Itoh, and Toshiaki Mase, “A Novel Practical Synthesis of Benzothiazoles Via Pd-Catalyzed Thiol Cross-Coupling,” Organic Letters 9, no. 18 (2007): 3687–9. doi:10.1021/ol7015737.
  • Xueqing Wang, Katerina Sarris, Karen Kage, Di Zhang, Scott P. Brown, Teodozyi Kolasa, Carol Surowy, Odile F. El Kouhen, Steven W. Muchmore, Jorge D. Brioni, et al., “Synthesis and Evaluation of Benzothiazole-Based Analogues as Novel, Potent, and Selective Fatty Acid Amide Hydrolase Inhibitors,” Journal of Medicinal Chemistry 52, no. 1 (2009): 170–80. doi:10.1021/jm801042a.
  • Michael J. Breslin, Paul J. Coleman, Christopher D. Cox, Izzat T. Raheem, Anthony J. Roecker, and John D. Schreier, “2,5-Disubstituted Piperidine Orexin Receptor Antagonists” (US Patent 8,710,076, issued April 29, 2014).
  • C. K. Lau, C. Dufresne, Y. Gareau, R. Zamboni, M. Labelle, R. N. Young, K. M. Metters, C. Rochette, N. Sawyer, D. M. Slipetz, et al., “Evolution of a Series of Non-Quinoline Leukotriene D4 Receptor Antagonist; Synthesis and SAR of Benzothiazoles and Thiazoles Substituted Benzyl Alcohols as Potent LTD4 Antagonists,” Bioorganic & Medicinal Chemistry Letters 5, no. 15 (1995): 1615–20. doi:10.1016/0960-894X(95)00265-U.
  • J. Apelt, S. Grassmann, X. Ligneau, H. H. Pertz, C. R. Ganellin, J-M. Arrang, J-C. Schwartz, W. Schunack, and H. Stark, “Search for Histamine H3 Receptor Antagonists With Combined Inhibitory Potency at N τ-Methyltransferase: Ether Derivatives,” Die Pharmazie-An International Journal of Pharmaceutical Sciences 60, no. 2 (2005): 97–106.
  • Arpana Rana, Nadeem Siddiqui, Suroor A. Khan, Syed Ehtaishamul Haque, and Mashooq A. Bhat, “N-{[(6-Substituted-1,3-Benzothiazole-2-yl) Amino] Carbonothioyl}-2/4-Substituted Benzamides: Synthesis and Pharmacological Evaluation,” European Journal of Medicinal Chemistry 43, no. 5 (2008): 1114–22. doi:10.1016/j.ejmech.2007.07.008.
  • Changsheng Gan, Lin Zhou, Zhenzhen Zhao, and Haoshu Wang, “Benzothiazole Schiff-Bases as Potential Imaging Agents for β-Amyloid Plaques in Alzheimer’s Disease,” Medicinal Chemistry Research 22, no. 9 (2013): 4069–74. doi:10.1007/s00044-012-0416-0.
  • Alexandru C. Razus, Liviu Birzan, Nina Mirela Surugiu, Andreea Cristina Corbu, and Filip Chiraleu, “Syntheses of Azulen-1-yl-Benzothiazol-2-yl Diazenes,” Dyes and Pigments 74, no. 1 (2007): 26–33. doi:10.1016/j.dyepig.2006.01.041.
  • Rangappa S. Keri, Mahadeo R. Patil, Siddappa A. Patil, and Srinivasa Budagumpi, “A Comprehensive Review in Current Developments of Benzothiazole-Based Molecules in Medicinal Chemistry,” European Journal of Medicinal Chemistry 89 (2015): 207–51. doi:10.1016/j.ejmech.2014.10.059.
  • Yugo Sato, Shigeki Sobu, Kazuhiro Nakabayashi, Sadaki Samitsu, and Hideharu Mori, “Highly Transparent Benzothiazole-Based Block and Random Copolymers with High Refractive Indices by RAFT Polymerization,” ACS Applied Polymer Materials 2, no. 8 (2020): 3205–14. doi:10.1021/acsapm.0c00365.
  • M. R. Maliyappa, J. Keshavayya, Mallappa Mahanthappa, Y. Shivaraj, and K. V. Basavarajappa, “6-Substituted Benzothiazole Based Dispersed Azo Dyes Having Pyrazole Moiety: Synthesis, Characterization, Electrochemical and DFT Studies,” Journal of Molecular Structure 1199 (2020): 126959. doi:10.1016/j.molstruc.2019.126959.
  • Michael González-Durruthy, Gustavo Scanavachi, Ramón Rial, Zhen Liu, M. Natália D. S. Cordeiro, Rosangela Itri, and Juan M. Ruso, “Mapping the Underlying Mechanisms of Fibrinogen Benzothiazole Drug Interactions Using Computational and Experimental Approaches,” International Journal of Biological Macromolecules 163 (2020): 730–44. doi:10.1016/j.ijbiomac.2020.07.044.
  • Fang Pu, Songrong Qu, Hao Qiu, and Lu Zhang, “Regulation of Light-Harvesting Antenna Based on Silver Ion-Enhanced Emission of Dye-Doped Coordination Polymer Nanoparticles,” Journal of Colloid and Interface Science 578 (2020): 254–61. doi:10.1016/j.jcis.2020.05.083.
  • Kannan Gokula Krishnan, Chandran Udhaya Kumar, Wei-Meng Lim, Chun-Wai Mai, Punniyakoti V. Thanikachalam, and Chennan Ramalingan, “Novel Cyanoacetamide Integrated Phenothiazines: Synthesis, Characterization, Computational Studies and In Vitro Antioxidant and Anticancer Evaluations,” Journal of Molecular Structure 1199 (2020): 127037. doi:10.1016/j.molstruc.2019.127037.
  • Lingbin Kong, Rong Huang, Haodan He, Yunxiang Fan, Jun Lin, and Shengjiao Yan, “Multi-Component Solvent-Free Cascade Reaction of 2-Cyanoacetamides: Regioselective Synthesis of Pyridin-2-Ones Bearing Quaternary Centers,” Green Chemistry 22, no. 1 (2020): 256–64. doi:10.1039/C9GC03692J.
  • Ahmed A. Fadda, and Ramy Rabie, “Cyanoacetylation of Amines: Recent Advances in Preparation Methods and Their Synthetic Uses in the Formation of Biologically Active Compounds,” Research on Chemical Intermediates 42, no. 2 (2016): 771–811. doi:10.1007/s11164-015-2055-9.
  • Ahmed A. Fadda, Ehab Abdel‐Latif, Ahmed Fekri, and Amal R. Mostafa, “Synthesis and Docking Studies of Some 1,2,3‐Benzotriazine‐4‐One Derivatives as Potential Anticancer Agents,” Journal of Heterocyclic Chemistry 56, no. 3 (2019): 804–14. doi:10.1002/jhet.3452.
  • E. Rajanarendar, M. Nagi Reddy, S. Rama Krishna, K. Rama Murthy, Y. N. Reddy, and M. V. Rajam, “Design, Synthesis, Antimicrobial, Anti-Inflammatory and Analgesic Activity of Novel Isoxazolyl Pyrimido[4,5-b]Quinolines and Isoxazolyl Chromeno[2,3-d]Pyrimidin-4-ones,” European Journal of Medicinal Chemistry 55 (2012): 273–83. doi:10.1016/j.ejmech.2012.07.029.
  • Elsherbiny H. El‐Sayed, and Ahmed A. Fadda, “Synthesis and Antimicrobial Activity of Some Novel Bis Polyfunctional Pyridine, Pyran, and Thiazole Derivatives,” Journal of Heterocyclic Chemistry 55, no. 10 (2018): 2251–60. doi:10.1002/jhet.3276.
  • Sherif A. F. Rostom, Ibrahim M. El-Ashmawy, Heba A. Abd El Razik, Mona H. Badr, and Hayam M. A. Ashour, “Design and Synthesis of Some Thiazolyl and Thiadiazolyl Derivatives of Antipyrine as Potential Non-Acidic Anti-Inflammatory, Analgesic and Antimicrobial Agents,” Bioorganic & Medicinal Chemistry 17, no. 2 (2009): 882–95. doi:10.1016/j.bmc.2008.11.035.
  • Ahmed A. Fadda, M. Abd El Salam, Eman H. Tawfik, E. M. Anwar, and Hassan A. Etman, “Synthesis and Insecticidal Assessment of Some Innovative Heterocycles Incorporating a Thiadiazole Moiety Against the Cotton Leafworm, Spodoptera littoralis,” RSC Advances 7, no. 63 (2017): 39773–85. doi:10.1039/C7RA06087D.
  • Ahmed A. Fadda, Nesma M. Bayoumy, Nanees N. Soliman, and Doaa M. Eldiasty, “Cyanoacetamide Intermediate in Heterocyclic Synthesis: Synthesis and Biological Evaluation of Hitherto New Dioxoisoindoline Heterocyclic Derivatives,” Journal of Heterocyclic Chemistry 56, no. 2 (2019): 597–607. doi:10.1002/jhet.3436.
  • Ahmed A. Fadda, Ramy Rabie, and Hassan A. Etman, “Synthesis of Thiazolinone, Aminopyrazole, Pyrazolopyrimidine, and Pyrazolotriazine Derivatives Starting from 1‐Naphthyl‐2‐Cyanoacetamide,” Journal of Heterocyclic Chemistry 54, no. 2 (2017): 1015–23. doi:10.1002/jhet.2669.
  • H. A. El-Sayed, A. H. Moustafa, A. A. Fadda, and Abd El-Rahman, “Pyrazole and Nicotinonitrile Derivatives Synthesized from Sulfa Drugs, and Their Antibacterial Activity,” Russian Journal of General Chemistry 89, no. 2 (2019): 339–47. doi:10.1134/S1070363219020270.
  • R. A. El-Sharkawy, and Reda R. Abdullah, “Biological Activity of Some Synthetic Cyanoacetamide Derivatives Against Some Cotton Pests,” Journal of Plant Protection and Pathology 11, no. 5 (2020): 249–252. doi:10.21608/jppp.2020.95610.
  • Boyan Bonev, James Hooper, and Judicaël Parisot, “Principles of Assessing Bacterial Susceptibility to Antibiotics Using the Agar Diffusion Method,” The Journal of Antimicrobial Chemotherapy 61, no. 6 (2008): 1295–301. doi:10.1093/jac/dkn090.
  • Mounyr Balouiri, Moulay Sadiki, and Saad Koraichi Ibnsouda, “Methods for In Vitro Evaluating Antimicrobial Activity: A Review,” Journal of Pharmaceutical Analysis 6, no. 2 (2016): 71–9. doi:10.1016/j.jpha.2015.11.005.
  • Jagadish Tota, and Satyanarayana Battu, “Synthesis, Characterisation, Biological Activity and Docking Studies of Ternary Metal Complexes of Cu(II) and Co (II with 4-Chloro-2-(2-Hydroxy) Naphthylidene Amino Benzothiazole Schiff Base and Glycine Ligands,” International Journal of Pure and Applied Researches 1, no. 1 (2018): 26–35.
  • Adnan A. Bekhit, Hesham TY Fahmy, Sherif AF Rostom, and Azza M. Baraka, “Design and Synthesis of Some Substituted 1H-Pyrazolyl-Thiazolo[4,5-d]Pyrimidines as Anti-Inflammatory–Antimicrobial Agents,” European Journal of Medicinal Chemistry 38, no. 1 (2003): 27–36.
  • M. A. Metwally, E. M. Keshk, A. Fekry, and H. A. Etman, “Synthesis and Reactions of 2-Cyano-2-(5-Oxo-3-Phenyl-Thiazolidin-2-Ylidene)-Acetamides,” Journal of Chemical Research 2004, no. 9 (2004): 602–4. doi:10.3184/0308234042430322.
  • Ola S. Afifi, Omaima G. Shaaban, Heba A. Abd El Razik, Shams El-Dine A. Shams El, Fawzia A. Ashour, Alaa A. El-Tombary, and Marwa M. Abu-Serie, “Synthesis and Biological Evaluation of Purine-Pyrazole Hybrids Incorporating Thiazole, Thiazolidinone or Rhodanine Moiety as 15-LOX Inhibitors Endowed with Anticancer and Antioxidant Potential,” Bioorganic Chemistry 87 (2019): 821–37. doi:10.1016/j.bioorg.2019.03.076.
  • Sraa Abu-Melha, Mastoura M. Edrees, Heba H. Salem, Nabila A. Kheder, Sobhi M. Gomha, and Mohamad R. Abdelaziz, “Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents,” Molecules 24, no. 3 (2019): 539. doi:10.3390/molecules24030539.
  • Anh Duong Tien, Pham-The, Hai, Le-Thi-Thu, Huong, Eun Jae, Park, Hye Won, Jun, Jong Soon, Kang, Joo-Hee, Kwon, Do Thi Mai, Dung, Vu Tran, Anh, Van Thi My, Hue, Sang-Bae, Han, “Exploration of Certain 1,3-Oxazole- and 1,3-Thiazole-Based Hydroxamic Acids as Histone Deacetylase Inhibitors and Antitumor Agents,” Bioorganic Chemistry 101 (2020): 103988. doi:10.1016/j.bioorg.2020.103988.
  • R. W. DeSimone, K. S. Currie, S. A. Mitchell, J. W. Darrow, and D. A. Pippin, “Privileged Structures: Applications in Drug Discovery,” Combinatorial Chemistry & High Throughput Screening 7, no. 5 (2004): 473–93. doi:10.2174/1386207043328544.
  • Tripti Mandal, Sudipta Pathak, Arka Dey, Md Maidul Islam, Saikat Kumar Seth, Abdulla Al Masum, Joaquín Ortega-Castro, Partha Pratim Ray, Antonio Frontera, and Subrata Mukhopadhyay, “Structures, Photoresponse Properties, and Biological Activity of Dicyano-Substituted 4-Aryl-2-Pyridone Derivatives,” ACS Omega 4, no. 4 (2019): 7200–12. doi:10.1021/acsomega.9b00289.
  • Yuying Zhang, Qianqian Zhang, Jie Bao, Jintian Huang, and Hua Zhang, “Apiosporamide, A 4-Hydroxy-2-Pyridone Alkaloid, Induces Apoptosis via PI3K/Akt Signaling Pathway in Osteosarcoma Cells,” OncoTargets and Therapy 12 (2019): 8611–20. doi:10.2147/OTT.S218692.
  • Slavica J. Porobić, Bojan Đ. Božić, Miroslav D. Dramićanin, Vesna Vitnik, Željko Vitnik, Milena Marinović-Cincović, and Dušan Ž. Mijin, “Absorption and Fluorescence Spectral Properties of Azo Dyes Based on 3-Amido-6-Hydroxy-4-Methyl-2-Pyridone: Solvent and Substituent Effects,” Dyes and Pigments 175 (2020): 108139. doi:10.1016/j.dyepig.2019.108139.
  • Reem H. Alzard, Muna S. Bufaroosha, Noura Al-Shamsi, Amir Sohail, Naji Al-Dubaili, Alaa A. Salem, Ibrahim M. Abdou, and Na’il Saleh, “Solubilization of Pyridone-Based Fluorescent Tag by Complexation in Cucurbit[7]uril,” ACS Omega 4, no. 1 (2019): 953–60. doi:10.1021/acsomega.8b02761.
  • Serdar Burmaoglu, Ali Osman Yilmaz, M. Fatih Polat, Rüya Kaya, İlhami Gulcin, and Oztekin Algul, “Synthesis and Biological Evaluation of Novel Tris-Chalcones as Potent Carbonic Anhydrase, Acetylcholinesterase, Butyrylcholinesterase and α-Glycosidase Inhibitors,” Bioorganic Chemistry 85 (2019): 191–7. doi:10.1016/j.bioorg.2018.12.035.
  • Tarek H. Afifi, Sayed M. Riyadh, Anwar A. Deawaly, and Arshi Naqvi, “Novel Chromenes and Benzochromenes Bearing Arylazo Moiety: Molecular Docking, In-Silico Admet, In-Vitro Antimicrobial and Anticancer Screening,” Medicinal Chemistry Research 28, no. 9 (2019): 1471–87. doi:10.1007/s00044-019-02387-5.
  • Rawda M. Okasha, Mosa Alsehli, Saleh Ihmaid, Sultan S. Althagfan, Mohamed SA El-Gaby, Hany EA Ahmed, and Tarek H. Afifi, “First Example of Azo-Sulfa Conjugated Chromene Moieties: Synthesis, Characterization, Antimicrobial Assessment, Docking Simulation as Potent Class I Histone Deacetylase Inhibitors and Antitumor Agents,” Bioorganic Chemistry 92 (2019): 103262. doi:10.1016/j.bioorg.2019.103262.
  • Fawzia F. Alblewi, Rawda M. Okasha, Zainab M. Hritani, Hany M. Mohamed, Mohammed A. A. El-Nassag, Ahmed H. Halawa, Ahmed Mora, Ahmed M. Fouda, Mohammed A. Assiri, Al-Anood M. Al-Dies, et al., “Antiproliferative Effect, Cell Cycle Arrest and Apoptosis Generation of Novel Synthesized Anticancer Heterocyclic Derivatives Based 4H-Benzo[h]Chromene,” Bioorganic Chemistry 87 (2019): 560–71. doi:10.1016/j.bioorg.2019.03.059.
  • Wenting Zhao, Bin Wang, Yuke Liu, Lei Fu, Li Sheng, Hongyi Zhao, Yu Lu, and Dongfeng Zhang, “Design, Synthesis, and Biological Evaluation of Novel 4H-Chromen-4-One Derivatives as Antituberculosis Agents Against Multidrug-Resistant Tuberculosis,” European Journal of Medicinal Chemistry 189 (2020): 112075. doi:10.1016/j.ejmech.2020.112075.
  • Siva Hariprasad Kurma, Shailaja Karri, Madhusudana Kuncha, Ramakrishna Sistla, and China Raju Bhimapaka, “Synthesis and Anti-Inflammatory Activity of 2-Oxo-2H-Chromenyl and 2H-Chromenyl-5-Oxo-2,5-Dihydrofuran-3-Carboxylates,” Bioorganic & Medicinal Chemistry Letters 30, no. 16 (2020): 127341. doi:10.1016/j.bmcl.2020.127341.
  • Tarik E. Ali, Mohammed A. Assiri, Hafez M. El-Shaaer, Mohamed M. Hassan, Ahmed M. Fouda, and Noha M. Hassanin, “Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Some Phosphorus Esters: Synthesis of Some Novel Chromenes Containing Phosphorus Heterocycles and Phosphonate Groups and Their Antioxidant and Cytotoxicity Properties,” Synthetic Communications 49, no. 21 (2019): 2983–94.
  • Elham Manouchehrizadeh, Azar Mostoufi, Elham Tahanpesar, and Masood Fereidoonnezhad, “Alignment-Independent 3D-QSAR and Molecular Docking Studies of Tacrine-4-Oxo-4H-Chromene Hybrids as Anti-Alzheimer's Agents,” Computational Biology and Chemistry 80 (2019): 463–71. doi:10.1016/j.compbiolchem.2019.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.