125
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Acidic Nano Zeolite Clinoptillolite; Green and Heterogeneous Catalyst for One-Pot Multi-Component Synthesis of 3-Substituted-Amino Coumarins

&
Pages 3473-3488 | Received 16 Feb 2022, Accepted 15 Apr 2022, Published online: 12 May 2022

References

  • M. Sathishkumar, S. Nagarajan, P. Shanmugavelan, P. Shanmugavelan, M. Dinesh, and A. Ponnuswamy, A Facile, Rapid, One-Pot Regio/Stereoselective Synthesis of 2-Iminothiazolidin-4-Ones under Solvent/Scavenger-Free Conditions,” Beilstein Journal of Organic Chemistry 9 (2013): 689–97. doi:10.3762/bjoc.9.78.
  • E. Rezaei-Seresht, M. Bakhshi-Noroozi, and B. Maleki, “Piperazine-Grafted Magnetic Reduced Graphene Oxide (Fe3O4@ rGO-NH) as a Reusable Heterogeneous Catalyst for Gewald Three-Component Reaction,” Polycyclic Aromatic Compounds 41, no. 9 (2021): 1944–52. doi:10.1080/10406638.2019.1708417.
  • B. Maleki, H. Atharifar, O. Reiser, and R. Sabbaghzadeh, “Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1, 4-Dihydropyridine Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 721–34. doi:10.1080/10406638.2019.1614639.
  • S. S. Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Fabrication of Sulfamic Acid Functionalized Magnetic Nanoparticles with Denderimeric Linkers and Its Application for Microextraction Purposes, One-Pot Preparation of Pyrans Pigments and Removal of Malachite Green,” Journal of the Taiwan Institute of Chemical Engineers 118 (2021): 342–54. doi:10.1016/j.jtice.2020.12.025.
  • B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S. A. Hossieni, and S. M. M. Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43. doi:10.1080/10406638.2018.1469519.
  • F. Adibian, A. R. Pourali, B. Maleki, M. Baghayeri, and A. Amiri, “One‐Pot Synthesis of Dihydro-1H-Indeno [1,2-b] Pyridines and Tetrahydrobenzo [b] Pyran Derivatives Using a New and Efficient Nanocomposite Catalyst Based on N‐Butylsulfonate‐Functionalized MMWCNTs-D-NH2,” Polyhedron 175, no. 2020 (2020): 114179. doi:10.1016/j.poly.2019.114179.
  • R. S. Varma, “Solvent-Free Organic Syntheses Using Supported Reagents and Microwave Irradiation,” Green Chemistry 1, no. 1 (1999): 43–55. doi:10.1039/a808223e.
  • H. Naeimi and Z. S. Nazifi, “Sulfonated Diatomite as Heterogeneous Acidic Nanoporous Catalyst for Synthesis of 14-Aryl-14-Hdibenzo[a,j]Xanthenes under Green Conditions,” Applied Catalysis A: General 477 (2014): 132–40. doi:10.1016/j.apcata.2014.03.012.
  • P. Sivaguru and A. Lalitha, “Ceric Ammonium Nitrate Supported HY-Zeolite: An Efficient Catalyst for the Synthesis of 1,8-Dioxooctahydroxanthenes,” Chinese Chemical Letters 25, no. 2 (2014): 321–23. doi:10.1016/j.cclet.2013.11.043.
  • P. Li, S. Regati, H. C. Huang, H. D. Arman, B. L. Chen, and J. C. G. Zhao, “A Sulfonate-Based Cu(I) metal-Organic Framework as a Highly Efficient and Reusable Catalyst for the Synthesis of Propargylamines under Solvent-Free Conditions,” Chinese Chemical Letters 26, no. 1 (2015): 6–10. doi:10.1016/j.cclet.2014.10.022.
  • S. R. Jetti, A. Bhatewara, T. Kadre, and S. Jain, “Silica-Bonded N-Propyl Sulfamic Acid as an Efficient Recyclable Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Thiones under Heterogeneous Conditions,” Chinese Chemical Letters 25, no. 3 (2014): 469–73. doi:10.1016/j.cclet.2013.12.022.
  • M. Kalhor and Z. Zarnegar, “Fe3O4/SO3H@zeolite-Y as a Novel Multi-Functional and Magnetic Nanocatalyst for Clean and Soft Synthesis of Imidazole and Perimidine Derivatives,” RSC Advances 9, no. 34 (2019): 19333–47. doi:10.1039/C9RA02910A.
  • A. Nezamzadeh-Ejhieh and M. Khorsandi, “Photodecolorization of Eriochrome Black T Using NiS-P Zeolite as a Heterogeneous Catalyst,” Journal of Hazardous Materials 176, no. 1–3 (2010): 629–37. doi:10.1016/j.jhazmat.2009.11.077.
  • R. M. Kakhki, A. Karimian, H. Hasan-Nejad, and F. Ahsani, “Zinc Oxide–Nanoclinoptilolite as a Superior Catalyst for Visible Photo-Oxidation of Dyes and Green Synthesis of Pyrazole Derivatives,” Journal of Inorganic and Organometallic Polymers and Materials 29, no. 4 (2019): 1358–1367. doi:10.1007/s10904-019-01100-8.
  • D. Kallo, J. Papp, and J. Valyon, “Adsorption and cata lytic Properties of Sedimentary Clinoptilolite and Mordenite from the Tokaj Hills, Hungary,” Zeolites 2, no. 1 (1982): 13–16.
  • V. Jeso and K. C. Nicolaou, “Total Synthesis of Tovophyllin B,” Tetrahedron Letters 11 (2009): 1161–63. doi:10.1016/S0144-2449(82)80034-1.
  • M. Markovi, A. Dakovi, G. E. Rottinghaus, M. Kragovi, A. Petkovi, D. Kra-Jišnik, J. Mili, M. Mercurio, and B. de Gennaro, “Adsorption of the Mycotoxin Zearalenone by Clinoptilolite and Phillipsite Zeolites Treated with Cetylpyridinium Surfactant,” Colloids and Surfaces, B, Biointerfaces 151 (2017): 324–32. doi:10.1016/j.colsurfb.2016.12.033.
  • Y. Zhao, X. Zhao, J. Deng, and C. He, “Uilization of Chitosan–Clinoptilolite Composite for the Removal of Radiocobalt from Aqueous Solution: Kinetics and Thermodynamics,” Journal of Radioanalytical and Nuclear Chemistry 308, no. 2 (2016): 701–709. doi:10.1007/s10967-015-4475-9.
  • H. B. Yener, M. Yılmaz, O. Deliismail, S. F. Ozkan, and S. S. Helvac, “Clinoptilolite Supported Rutile TiO2 Composites: Synthesis, Characterization, and Photocatalytic Activity on the Degradation of Terephthalic Acid,” Separation and Purification Technology 173 (2017): 17–26. doi:10.1016/j.seppur.2016.09.010.
  • D. Guaya, C. Valderrama, A. Farran, C. Armijos, and J. L. Cortina, “Multaneous Phosphate and Ammonium Removal from Aqueous Solution by a Hydrated Aluminum Oxide Modified Natural Zeolite,” Chemical Engineering Journal 271 (2015): 204–213. doi:10.1016/j.cej.2015.03.003.
  • S. M. Baghbanian, “Propylsulfonic Acid Functionalized Nanozeolite Clinoptilolite as Heterogeneous Catalyst for the Synthesis of Quinoxaline Derivatives,” Chinese Chemical Letters 26, no. 9 (2015): 1113–16. doi:10.1016/j.cclet.2015.04.037.
  • P. Guzel, Y. A. Aydın, and N. Deveci Aksoy, “Removal of Chromate from Wastewater Using Amine-Based-Surfactant-Modified Clinoptilolite,” International Journal of Environmental Science and Technology 13, no. 5 (2016): 1277–88. doi:10.1007/s13762-016-0954-y.
  • M. R. Hadler and R. S. Shadbolt, “Novel 4-Hydroxycoumarin Anticoagulants Active against Resistant Rats,” Nature 253, no. 5489 (1975): 275–77.
  • N. Barooah, J. Mohanty, H. Pal, and A. C. Bhasikuttan, “Non-Covalent Interactions of Coumarin Dyes with Cucurbit Uril Macrocycle: Modulation of ICT to TICT State Conversion,” Organic Bimolecular Chemistry 10 (2012): 5055–5062.
  • Z. Xing, Y. Fu, J. Zhou, C. Zhu, and Y. Cheng, “Coumarin-Based Chiral Fluorescence Sensor Incorporating a Thiourea Unit for Highly Enantioselective Recognition of N-Boc-Protected Proline,” Organic & Biomolecular Chemistry 10, no. 20 (2012): 4024–28. doi:10.1039/c2ob25311a.
  • O. E. Dahl, “New Oral Antithrombotics: Focus on Dabigatran, an Oral, Reversible Direct Thrombin Inhibitor for the Prevention and Treatment of Venous and Arterial Thromboembolic Disorders,” Vascular Health and Risk Management 8 (2012): 45–57. doi:10.2147/VHRM.S26482.
  • A. Kale, C. Bingi, S. Sripada, C. G. Kumar, and K. Atmakur, “A Simple, One Pot synthesis of Furo[3,2-c]Chromenes and Evaluation of Antimicrobial Activity,” Bioorganic & Medicinal Chemistry Letters 26, no. 20 (2016): 4899–902. doi:10.1016/j.bmcl.2016.09.022.
  • J. W. Chung, K. Lee, C. Neikirk, C. M. Nelson, and R. D. Priestley, “Priestley, Photoresponsive Coumarin-Stabilized Polymeric Nanoparticles as a Detectable Drug Carrier,” Small (Weinheim an Der Bergstrasse, Germany) 8, no. 11 (2012): 1693–700. doi:10.1002/smll.201102263.
  • N. Hamdi, C. Fischmeister, M. C. Puerta, and P. Valerga, “A Rapid Access to New Coumarinyl Chalcone and Substituted Chromeno[4,3-c]Pyrazol-4(1H)-Ones and Their Antibacterial and DPPH Radical Scavenging Activities,” Medicinal Chemistry Research 20, no. 4 (2011): 522–30. doi:10.1007/s00044-010-9326-1.
  • N. Obaiah, Y. Bodke, and S. Telkar, “Synthesis of 3‐[(1H‐Benzimidazol‐2‐Ylsulfanyl)(Aryl)Methyl]‐4‐Hydroxycoumarin Derivatives as Potent Bioactive Molecules,” ChemistrySelect 5, no. 1 (2020): 178–84.
  • M. Arend, B. Westermann, and N. Risch, “Modern Variants of the Mannich Reaction,” Angewandte Chemie International Edition 37, no. 8 (1998): 1044–70. doi:10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E.
  • S. Yadav, S. Singh, and C. Gupta, “Environmental Benign Synthesis of Some Novel Biologically Active 7-Hydroxy-4-Methyl Coumarin Derivatives,” Current Research in Green and Sustainable Chemistry 5 (2022): 100260. doi:10.1016/j.crgsc.2022.100260.
  • N. Azizi, L. Torkiyan, and M. R. Saidi, “Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids,” Organic Letters 8, no. 10 (2006): 2079–82. doi:10.1021/ol060498v.
  • A. Córdova, “The Direct Catalytic Asymmetric Mannich Reaction,” Accounts of Chemical Research 37, no. 2 (2004): 102–12. doi:10.1021/ar030231l.
  • J. M. Verkade, L. J. van Hemert, P. J. Quaedflieg, and F. P. Rutjes, “Organocatalysed Asymmetric Mannich Reactions,” Chemical Society Reviews 37, no. 1 (2008): 29–41. doi:10.1039/b713885g.
  • N. Azizi and M. Edrisi, “Deep Eutectic Solvent Immobilized on SBA-15 as a Novel Separable Catalyst for One-Pot Three-Component Mannich Reaction,” Microporous and Mesoporous Materials 240 (2017): 130–36. doi:10.1016/j.micromeso.2016.11.009.
  • T. Akiyama, J. Itoh, K. Yokota, and K. Fuchibe, “Enantioselective Mannich‐Type Reaction Catalyzed by a Chiral Brønsted Acid,” Angewandte Chemie 116, no. 12 (2004): 1592–94. doi:10.1002/ange.200353240.
  • Kh. Rabiei and H. Naeimi, “Sonocatalyzed Total Synthesis of N,N-Diaryl-Formamides through Oxidation and Hydrolysis Reaction of Gem-Dichloroaziridines Using DMSO/H2O,” Current Organic Synthesis 15, no. 7 (2018): 1014–19. doi:10.2174/1570179415666180215154336.
  • S. Niyazi, B. Pouramiri, and Kh. Rabiei, “Functionalized Nanoclinoptilote as a Novel and Green Catalyst for the Synthesis of Mannich Bases Derived from 4-Hydroxy Coumarin,” Journal of Molecular Structure 1250 (2022): 131908–920. doi:10.1016/j.molstruc.2021.131908.
  • M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, Zh Asgari, V. Khakyzadeh, and A. Hasaninejad, “Design of Ionic Liquid 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as a Dual-Catalyst for the One-Pot Multi-Component Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles,” Journal of Industrial and Engineering Chemistry 19, no. 3 (2013): 721–26. doi:10.1016/j.jiec.2012.10.014.
  • P. Onkara, A. Sunil Kumar, S. Kankaraju, B. Prasanna, Y. Pydisetty, and G. V. P. Chandramouli, “Molecular Docking Studies Synthesis and Anti-Bacterial Properties of New Mannich Bases,” International Journal of Pharma and Bio Science 4 (2013): 263–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.