234
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Copper(II) Monomer Bearing Phenolate-Based Ligand: Theoretical and Experimental Visions

, , , , , , ORCID Icon, & show all
Pages 3489-3501 | Received 02 Mar 2022, Accepted 20 Apr 2022, Published online: 10 May 2022

References

  • C. R. Hess, R. W. D. Welford and J. P. Klinman, “Oxygen-Activating Enzymes, Chemistry of,” in Wiley Encyclopedia of Chemical Biology, edited by Tadhg P. Egley, vol. 3 (USA: Wiley–Blackwell, 2009); p. 529.
  • J. P. Klinman, “Life as Aerobes: Are There Simple Rules for Activation of Dioxygen by Enzymes?,” Journal of Biological Inorganic Chemistry 6, no. 1 (2001): 1–13. doi:10.1007/s007750000172.
  • N. F. B. Azeredo, F. V. Borges, M. S. Mathias, J. A. L. C. Resende, R. W. A. Franco, M. M. Kanashiro, A. Horn, Jr., and C. Fernandes, “Effect of the Hydroxamate Group in the Antitumoral Activity and Toxicity toward Normal Cells of New Copper(II) Complexes,” Biometals 34, no. 2 (2021): 229–44. doi:10.1007/s10534-020-00275-9.
  • L. J. H. Borges, E. S. Bull, C. Fernandes, A. Horn, Jr., N. F. Azeredo, J. A. L. Resende, W. R. Freitas, E. C. Q. Carvalho, L. S. Lemos, H. Jerdy, et al, “In Vitro and in Vivo Studies of the Antineoplastic Activity of Copper (II) Compounds against Human Leukemia THP-1 and Murine Melanoma B16-F10 Cell Lines,” European Journal of Medicinal Chemistry 123 (2016): 128–40. doi:10.1016/j.ejmech.2016.07.018.
  • P. Kumar, B. Baidya, S. K. Chaturvedi, R. H. Khan, D. Manna, and B. Mondal, “DNA Binding and Nuclease Activity of Copper(II) Complexes of Tridentate Ligands,” Inorganica Chimica Acta 376, no. 1 (2011): 264–70. doi:10.1016/j.ica.2011.06.022.
  • M. K. Panda, M. M. Shaikh, R. J. Butcher, and P. Ghosh, “Functional Mimics of Catechol Oxidase by Mononuclear Copper Complexes of Sterically Demanding [NNO] Ligands,” Inorganica Chimica Acta 372, no. 1 (2011): 145–51. doi:10.1016/j.ica.2011.01.081.
  • S. Kansız, A. Tolan, M. Azam, N. Dege, M. Alam, Y. Sert, S. Al-Resayes, and H. İçbudak, “Acesulfame Based Co(II) Complex: Synthesis, Structural Investigations, Solvatochromism, Hirshfeld Surface Analysis and Molecular Docking Studies,” Polyhedron 218 (2022): 115762. doi:10.1016/j.poly.2022.115762.
  • P. E. Kruger, B. Moubaraki, and K. S. Murray, “Synthesis, Magnetism and Electrochemistry of Tetranuclear Nickel(II) and Copper(II) Complexes of an Unsymmetrical Bis-Pentadentate Schiff-Base Ligand,” Polyhedron 16, no. 15 (1997): 2659–65. doi:10.1016/S0277-5387(96)00596-7.
  • Z. Puterová-Tokárová,, V. Mrázová, and R. Boča, “Magnetism of Novel Schiff-Base Copper (II) Complexes Derived from Aminoacids,” Polyhedron 61 (2013): 87–93.
  • U. C. Okeke, Y. Gultneh, R. Otchere, and R. J. Butcher, “Synthesis and Catalysis of Hydrolysis of Phosphate Esters by Zn(II), Cu(II), and Ni(II) Schiff Base Complexes,” Inorganic Chemistry Communications 97 (2018): 1–6. doi:10.1016/j.inoche.2018.08.024.
  • A. Bhattacharjee, S. Dey, and P. Roy, “Synthesis, Characterization and Catalytic Properties of Dinuclear Complexes of Copper(II) and Nickel(II): Oxidation of Cyclohexane, Toluene and Cyclopentane,” Inorganica Chimica Acta 490 (2019): 93–103. doi:10.1016/j.ica.2019.03.005.
  • S. S. Jawoor, S. A. Patil, M. Kumbar, and P. B. Ramawadgi, “Green Synthesis of Nano Sized Transition Metal Complexes Containing Heterocyclic Schiff Base: Structural and Morphology Characterization and Bioactivity Study,” Journal of Molecular Structure 1164 (2018): 378–85. doi:10.1016/j.molstruc.2018.03.084.
  • Z. Tohidiyan, I. Sheikhshoaie, M. Khaleghi, and J. T. Mague, “A Novel Copper (II) Complex Containing a Tetradentate Schiff Base: Synthesis, Spectroscopy, Crystal Structure, DFT Study, Biological Activity and Preparation of Its Nano-Sized Metal Oxide,” Journal of Molecular Structure 1134 (2017): 706–14. doi:10.1016/j.molstruc.2017.01.026.
  • A. A. Alothman, E. S. Al-Farraj, W. A. Al-Onazi, Z. M. Almarhoon, and A. M. Al-Mohaimeed, “Spectral Characterization, Electrochemical, Antimicrobial and Cytotoxic Studies on New Metal(II) Complexes Containing N2O4 Donor Hexadentate Schiff Base Ligand,” Arabian Journal of Chemistry 13 (2020): 3889–02. doi:10.1016/j.arabjc.2019.02.003.
  • K. Mahmood, W. Hashmi, H. Ismail, B. Mirza, B. Twamley, Z. Akhter, I. Rozas, and R. J. Baker, “Synthesis, DNA Binding and Antibacterial Activity of Metal(II) Complexes of a Benzimidazole Schiff Base,” Polyhedron 157 (2019): 326–34. doi:10.1016/j.poly.2018.10.020.
  • E. W. Ainscough, A. M. Brodie, A. J. Dobbs, J. D. Ranford, and J. M. Waters, “Antitumour Copper(II) Salicylaldehyde Benzoylhydrazone (H2sb) Complexes: Physicochemical Properties and the Single-Crystal X-Ray Structures of [{Cu(H2sb)(CCl3CO2)2}2] and [{Cu(Hsb)(ClO4)(C2H5OH)}2] and the Related Salicylaldehyde Acetylhydrazone (H2sa) Complex, [Cu(Hsa)Cl(H2O)]·H2O,” Inorganica Chimica Actas 267, no. 1 (1998): 27–38. doi:10.1016/S0020-1693(97)05548-5.
  • E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, and L. Tian, “Copper Active Sites in Biology,” Chemical Reviews 114, no. 7 (2014): 3659–853. doi:10.1021/cr400327t.
  • K. Visvaganesan, S. Ramachitra, and M. Palaniandavar, “Functional Models for Enzyme–Substrate Adducts of Catechol Dioxygenase Enzymes: The Lewis Basicity of Facially Coordinating Tridentate Phenolate Ligands Tunes the Rate of Dioxygenation and Product Selectivity,” Inorganica Chimica Acta 378, no. 1 (2011): 87–94. doi:10.1016/j.ica.2011.08.025.
  • (a) G. M. Sheldrick, “SHELXL-2014: Program for Crystal Structure Refinement,” (University of Gottingen, Gottingen, Germany, 2014); (b) L. J. Farrugia, “WinGXver.2014.1: An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single-Crystal X-Ray Diffraction Data” (Department of Chemistry, University of Glasgow, Glasgow, 2014).
  • M. J. Frisch and D. J. Fox, Gaussian 09, C3 Revision B.01 (Wallingford, CT: Gaussian Inc., 2010).
  • R. I. Dennington, T. Keith, and J. Millam, Gaussview, Version 5.0.8 (Shawnee Mission, KS: Semichem. Inc., 2008).
  • M. H. Jomroz, Vibrational Energy Distribution Analysis (Warsaw: VEDA4, 2004).
  • R. Ditchfield, “Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility,” Journal of Chemical Physics 56, no. 11 (1972): 5688–91. doi:10.1063/1.1677088.
  • (a) A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, “Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds Containing Nitrogen–Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[1,7-Bis(N-Methylbenzimidazol-2′-yl)-2,6-Dithiaheptane]Copper(II) Perchlorate,” Journal of the Chemical Society, Dalton Transactions (1984): 1349–1356; (b) R. Konakanchi, P. Jyothi, & L. R. Kotha, “Investigation of Structures, FTIR, FT-Raman, In Vivo Anti-Inflammatory, Molecular Docking and Molecular Characteristics of 2-Amino-3-Pyridine Carboxaldehyde and Its Copper(II) Complex Using Experimental and Theoretical Approach,” Polycyclic Aromatic Compounds 42 (2021): 226–248; (c) R. Konakanchi, J. Haribabu, J. Prashanth, V. B. Nishtala, R. Mallela, S. Manchala, D. Gandamalla, R. Karvembu, B. V. Reddy, N. R. Yellu, and L. R. Kotha, “Synthesis, Structural, Biological Evaluation, Molecular Docking and DFT Studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes Bearing Heterocyclic Thiosemicarbazone Ligand,” Applied Organometallic Chemistry 32 (2018): e4415. doi:10.1080/10406638.2020.1725899;.
  • D. Lin-Vien, N. B. Colthup, W. G. Fately, and J. G. Graselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (San Diego, CA: Academic Press, 1991).
  • R. G. Zhbankov, W. M. Adrianow, H. Ratajczak, and M. Marchewka, “Vibrational Spectra and Stereochemistry of Mono- and Polysaccharides, I, Anomers of D-Glucose,” Zhurnal Strukturnoi Khimii 36 (1995): 322–329 (in Russian); Journal of Structural Chemistry 36 (1995): 287–94 (English translation).
  • K. Karrouchi, S. A. Brandán, Y. Sert, H. El-Marzouqi, S. Radi, M. Ferbinteanu, M. El Abbes Faouzi, Y. Garcia, and M. Ansar, “Synthesis, X-Ray Structure, Vibrational Spectroscopy, DFT, Biological Evaluation and Molecular Docking Studies of (E)-N′-(4-(Dimethylamino)Benzylidene)-5-Methyl-1H-Pyrazole-3-Carbohydrazide,” Journal of Molecular Structure 1219 (2020): 128541. doi:10.1016/j.molstruc.2020.128541.
  • T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92. doi:10.1002/jcc.22885.
  • N. P. G. Roeges, A Guide to the Complete Interpretation of the Infrared Spectra of Organic Structures (New York: Wiley, 1994).
  • B. Smith, Infrared Spectral Interpretation, a Systematic Approach (Washington, DC: CRC Press, 1999).
  • R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds, 6th ed. (New York: John Wiley & Sons Inc., 2003).
  • V. Krishnakumar, R. Mathammal, and S. Muthunatesan, “Structures and Vibrational Frequencies of 2-Naphthoic Acid and 6-Bromo-2-Naphthoic Acid based on Density Functional Theory Calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 70, no. 1 (2008): 201–09. doi:10.1016/j.saa.2007.06.039.
  • R. M. Silverstein, G. C. Basseler, and T. C. Morill, Spectrometric Identification of Organic Compounds, 4th ed. (New York: John Wiley and Sons, 1981), QD272.S6-S55.
  • (a) G. Varsanyi, Vibrational Spectra of Benzene Derivatives (New York: Academic Press, 1969); (b) K. Ramaiah, J. Prashanth, J. Haribabu, E. Srikanth, B. Venkatram Reddy, R. Karvembu, and K. Laxma Reddy, “Vibrational Spectroscopic (FT-IR, FT-Raman), Anti-inflammatory, Docking and Molecular Characteristic Studies of Ni(II) Complex of 2-Aminonicotinaldehyde Using Theoretical and Experimental Methods,” Journal of Molecular Structure 1175 (2019): 769–81. doi:10.1016/j.molstruc.2018.08.061; (c) P. R. Reddy, J. Prashanth, B. Prasanna, and B. V. Reddy, “Synthesis, Spectroscopic, and DFT Quantum Chemical Studies of 3- and 4-Pyridylacetonitriles,” Journal of Molecular Structure 1176 (2019): 447–60. DOI: 10.1002/aoc.4415.
  • (a) A. Fatima, J. Bhadoria, S. K. Srivastava, I. Verma, N. Siddiqui, and S. Javed, “Exploration of Experimental and Theoretical Properties of 5,5-Dimethyl 3-Amino-Cyclohex-2-en-1-One (Amine Dimedone) by DFT/TD-DFT with Ethanol and DMSO as Solvents and Molecular Docking Studies,” Journal of Molecular Liquids 338 (2021): 116551; (b) I. Mahmudov, Y. Demir, Y. Sert, Y. Abdullayev, A. Sujayev, S. H. Alwasel, and I. Gulcin, “Synthesis and Inhibition Profiles of N-Benzyl-and N-Allyl Aniline Derivatives against Carbonic Anhydrase and Acetylcholinesterase—A Molecular Docking Study,” Arabian Journal of Chemistry 15 (2022): 103645; (c) C. Alaşalvar, N. Öztürk, A. A.-M. Abdel-Aziz, H. Gökce, A. S. El-Azab, M. A. El-Gendy, and Y. Sert, “Molecular Structure, Hirshfeld Surface Analysis, Spectroscopic (FT-IR, Laser-Raman, UV–Vis. and NMR), HOMO-LUMO and NBO Investigations on N-(12-Amino-9,10-Dihydro-9,10-Ethanoanthracen-11-yl)-4-Methylbenzenesulfonamide,” Journal of Molecular Structure 1171 (2018): 696–705. doi:10.1016/j.molliq.2021.116551.
  • B. R. Raajaraman, N. R. Sheela, and S. Muthu, “Spectroscopic, Quantum Computational and Molecular Docking Studies on 1-Phenylcyclopentane Carboxylic Acid,” Computational Biology and Chemistry 82 (2019): 44–56. doi:10.1016/j.compbiolchem.2019.05.011.
  • T. Shanmugavadivu, M. Dhandapani, G. Vinitha, and T. Joselin Beaula, “Quantum Chemical Calculations, Structural, Spectral and Nonlinear Optical Investigations of a Novel Crystal N,N′-Diphenylguanidinium 3,5-Dichlorobenzoate,” Journal of Physics and Chemistry of Solids 130 (2019): 69–83. doi:10.1016/j.jpcs.2019.01.024.
  • N. Swarnalatha, S. Gunasekaran, S. Muthu, and M. Nagarajan, “Molecular Structure Analysis and Spectroscopic Characterization of 9-Methoxy-2H-Furo[3,2-g]Chromen-2-One with Experimental (FT-IR and FT-Raman) Techniques and Quantum Chemical Calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015): 721–29. doi:10.1016/j.saa.2014.08.125.
  • J. S. Murry and K. Sen, Molecular Electrostatic Potential Concepts and Applications (Amsterdam: Elsevier, 1996).
  • P. Politzer, P. R. L. Aurence, and K. Jayasuriya, “Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena,” Environmental Health Perspectives 61 (1985): 191–202. doi:10.1289/ehp.8561191.
  • A. Fatima, Km Pooja, S. Savita, M. Singh, I. Verma, N. Siddiqui, and S. Javed, “Quantum Chemical, Experimental Spectroscopic, Hirshfeld Surface and Molecular Docking Studies of the Anti-Microbial Drug Sulfathiazole,” Journal of Molecular Structure 1245 (2021): 131118. doi:10.1016/j.molstruc.2021.131118.
  • N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, “Cclib: A Library for Package-Independent Computational Chemistry Algorithms,” Journal of Computational Chemistry 29, no. 5 (2008): 839–45. doi:10.1002/jcc.20823.
  • (a) S. Itoh, K. Hirano, A. Furuta, M. Komatsu, Y. Ohshiro, A. Ishida, S. Takamuku, T. Kohzuma, N. Nakamura, and S. Suzuki, Chemistry Letters 36 (1993): 2099–104; (b) S. Itoh, S. Takayama, R. Arakawa, A. Furuta, M. Komatsu, A. Ishida, S. Takamuku, and S. Fukuzumi, Inorganic Chemistry (1997):1407–16; (c) S. Itoh, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa, N. Sakurada, R. Arakawa, and S. Fukuzumi, “Oxydation of benzyl alcohol with CuII and ZnIIComplexes of Phenoxy Radical as a model of reaction of galactose oxydase,” Angewandte Chemie International Edition in English 38 (1999): 2774–76.
  • (a) M. M. Whittaker, Y.-Y. Chuang, and J. W. Whittaker, “Models for the Redox Active Site in Galactose Oxidase,” Journal of the American Chemical Society 115, no. 22 (1993): 10029–10035; (b) M. M. Whittaker, W. R. Duncan, and J. W. Whittaker, “Synthesis, Structure, and Properties of a Model for Galactose Oxidase,” Inorganic Chemistry 35 (1996): 382–86. doi:10.1021/ja00075a019.
  • (a) J. A. Halfen, V. G. Young, Jr. and W. B. Tolman, “Modelle für Reaktionen am Aktiven Zentrum der Galactose-Oxidase,” Angewandte Chemie 108, no. 15 (1996): 1832–34; (b) J. A. Halfen, B. A. Jazdzewski, S. Mahapatra, L. M. Berreau, E. C. Wilkinson, L. Que, Jr., and W. B. Tolman, “Synthetic Models of the Inactive Copper (II)–Tyrosinate and Active Copper (II)–Tyrosyl Radical Forms of Galactose and Glyoxal Oxidases,” Journal of the American Chemical Society 119 (1997): 8217–27. doi:10.1002/ange.19961081532.
  • I. Fleming, Frontier Orbitals, Organic Chemical Reactions (New York: John Wiley and Sons, 1976), 5–27.
  • D. Mahadevan, S. Periandy, M. Karabacak, S. Ramalingam, and N. Puviarasan, “Spectroscopic (FT-IR, FT-Raman and UV–Vis) Investigation and Frontier Molecular Orbitals Analysis on 3-Methyl-2-Nitrophenol Using Hybrid Computational Calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 86 (2012): 139–51. doi:10.1016/j.saa.2011.10.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.