118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green and Efficient Synthesis of Novel Polysubstituted 2-Pyrrolidinones under Catalyst and Solvent-Free Conditions

, , &
Pages 3535-3545 | Received 18 Mar 2022, Accepted 23 Apr 2022, Published online: 10 May 2022

References

  • S. E. John, S. Gulati, and N. Shankaraiah, “Recent Advances in Multicomponent Reactions and Their Mechanistic Insights: A Triennium Review,” Organic Chemistry Frontiers 8, no. 15 (2021): 4237–87. doi:10.1039/D0QO01480J.
  • G. Susan Treesa, M. Neetha, S. Saranya, and G. Anilkumar, “Cobalt‐Catalyzed Multi‐Component Reactions: Recent Advances and Perspectives in Organic Synthesis,” ChemistrySelect 5, no. 25 (2020): 7400–16.
  • M. Neetha, K. Rohit, S. Saranya, and G. Anilkumar, “Zinc‐Catalysed Multi‐Component Reactions: An Overview,” ChemistrySelect 5, no. 3 (2020): 1054–70. doi:10.1002/slct.201904146.
  • N. V. Shitole, “An Environmentally Benign Synthesis of 2,4,5-Triaryl-1H-Imidazoles via Multicomponent Reactions and Its Medicinal Importance,” in Green Chemistry and Sustainable Technology (Point Pleasant, NJ: Apple Academic Press, 2020), 213–33.
  • S. Zhaleh, N. Hazeri, M. R. Faghihi, and M. T. Maghsoodlou, “The First Effort for the Preparation of Amidoalkyl Naphthoquinone Skeleton Based on Solvent-Free Multicomponent Reaction,” Polycyclic Aromatic Compounds 42, no. 2 (2022): 558–10. doi:10.1080/10406638.2020.1745249.
  • J. Safari, and N. H. Nasab, “Ultrasonic Activated Efficient Synthesis of Indenopyrazolones via a One-Pot Multicomponent Reaction,” Polycyclic Aromatic Compounds 41, no. 7 (2021): 1383–91. doi:10.1080/10406638.2019.1678183.
  • J. Zhu, and H. Bienaymé, Multicomponent Reactions (Hoboken, NJ: John Wiley & Sons, 2006).
  • Z. Hosseinzadeh, A. Ramazani, H. Ahankar, K. Ślepokura, and T. Lis, “Sulfonic Acid-Functionalized Silica-Coated Magnetic Nanoparticles as a Reusable Catalyst for the Preparation of Pyrrolidinone Derivatives under Eco-Friendly Conditions,” Silicon 11, no. 6 (2019): 2933–43. doi:10.1007/s12633-019-0087-2.
  • S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka, and Y. Sasaki, “Lactacystin, a Novel Microbial Metabolite, Induces Neuritogenesis of Neuroblastoma Cells,” The Journal of Antibiotics 44, no. 1 (1991): 113–6. doi:10.7164/antibiotics.44.113.
  • Y. Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, and H. Osada, “Azaspirene: A Novel Angiogenesis Inhibitor Containing a 1-oxa-7-azaspiro[4.4]non-2-ene-4,6-dione skeleton produced by the fungus Neosartorya sp,” Organic Letters 4, no. 17 (2002): 2845–8. doi:10.1021/ol020104+.
  • J. Chen, P. Q. Huang, and Y. Queneau, “Enantioselective Synthesis of the R-Enantiomer of the Feeding Deterrent (S)-Ypaoamide,” The Journal of Organic Chemistry 74, no. 19 (2009): 7457–63. doi:10.1021/jo901557h.
  • H. He, H. Y. Yang, R. Bigelis, E. H. Solum, M. Greenstein, and G. T. Carter, “Pyrrocidines a and B, New Antibiotics Produced by a Filamentous Fungus,” Tetrahedron Letters 43, no. 9 (2002): 1633–6. doi:10.1016/S0040-4039(02)00099-0.
  • Ettlinger, v L. Gäumann, E. Hütter, R. Keller, ‐Schierlein, W. Kradolfer, F. Neipp, L. Prelog, V. Zähner, and H. “Stoffwechselprodukte Von Actinomyceten 17. Mitteilung Holomycin,” Helvetica Chimica Acta 42, no. 2 (1959): 563–9. doi:10.1002/hlca.19590420225.
  • L. P. Dwoskin, L. Teng, S. T. Buxton, and P. A. Crooks, “(S)-(−)-Cotinine, the Major Brain Metabolite of Nicotine, Stimulates Nicotinic Receptors to Evoke [3H] Dopamine Release from Rat Striatal Slices in a Calcium-Dependent Manner,” Journal of Pharmacology and Experimental Therapeutics 288, no. 3 (1999): 905–11.
  • G. A. Brine, and K. G. Boldt, “Synthesis and Anticonvulsant Screening of 3,3-diphenyl-2-Pyrrolidone Derivatives,” Journal of Pharmaceutical Sciences 72, no. 6 (1983): 700–2. doi:10.1002/jps.2600720627.
  • B. Li, M. P. Lyle, G. Chen, J. Li, K. Hu, L. Tang, M. A. Alaoui-Jamali, and J. Webster, “Substituted 6-amino-4H-[1,2]dithiolo[4,3-b]pyrrol-5-ones: Synthesis, Structure-activity Relationships, and Cytotoxic Activity on Selected Human Cancer Cell Lines,” Bioorganic & Medicinal Chemistry 15, no. 13 (2007): 4601–8. doi:10.1016/j.bmc.2007.04.017.
  • A. Dutta, M. A. Rohman, R. Nongrum, A. Thongni, S. Mitra, and R. Nongkhlaw, “Visible Light-Promoted Synthesis of Pyrrolidinone Derivatives via Rose Bengal as a Photoredox Catalyst and Their Photophysical Studies,” New Journal of Chemistry 45, no. 18 (2021): 8136–48. doi:10.1039/D1NJ00343G.
  • R. Sarkar, and C. Mukhopadhyay, “Admicellar Catalysis in Multicomponent Synthesis of Polysubstituted Pyrrolidinones,” Tetrahedron Letters 54, no. 28 (2013): 3706–11. doi:10.1016/j.tetlet.2013.05.017.
  • J. Safaei-Ghomi, S. Zahedi, and H. Basharnavaz, “Synthesis and Characterization of Ionic Liquid Supported on Fe3O4 Nanoparticles and a DFT Study of 1, 3-Dipolar Cycloaddition for the Synthesis of Isoxazolidines in the Presence of Ionic Liquid-Fe3O4,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 574–84. doi:10.1080/10406638.2018.1462211.
  • Y. Dommaraju, S. Bora, and D. Prajapati, “A Facile Approach to the Synthesis of Structurally Diverse 6,8a-dihydropyrido[2,3-d]pyrimidine Derivatives via a Three-component Domino Reaction,” Organic & Biomolecular Chemistry 13, no. 35 (2015): 9181–5. doi:10.1039/c5ob01484k.
  • R. Sarkar, and C. Mukhopadhyay, “Cu Catalyzed Cross-Dehydrogenative Coupling Reaction for the Synthesis of 3-Hydroxy-2-Pyrrolidinones,” Tetrahedron Letters 59, no. 32 (2018): 3069–76. doi:10.1016/j.tetlet.2018.06.061.
  • N. G. Khaligh, T. Mihankhah, and M. R. Johan, “Green One-Pot Multicomponent Synthesis of Pyrrolidinones Using Planetary Ball Milling Process under Solvent-Free Conditions,” Synthetic Communications 49, no. 10 (2019): 1334–42. doi:10.1080/00397911.2019.1601225.
  • R. Ghorbani-Vaghei, D. Azarifar, S. Daliran, and A. R. Oveisi, “The UiO-66-SO3H Metal–Organic Framework as a Green Catalyst for the Facile Synthesis of Dihydro-2-Oxypyrrole Derivatives,” RSC Advances 6, no. 35 (2016): 29182–9. doi:10.1039/C6RA00463F.
  • A. K. Singh, A. Kumar, V. Sharma, and P. Kala, “Sustainable Techniques in Grinding: State of the Art Review,” Journal of Cleaner Production 269 (2020): 121876. doi:10.1016/j.jclepro.2020.121876.
  • F. Flach, C. Konnerth, C. Peppersack, J. Schmidt, C. Damm, S. Breitung-Faes, W. Peukert, and A. Kwade, “Impact of Formulation and Operating Parameters on Particle Size and Grinding Media Wear in Wet Media Milling of Organic Compounds–a Case Study for Pyrene,” Advanced Powder Technology 27, no. 6 (2016): 2507–19. doi:10.1016/j.apt.2016.09.026.
  • V. Chipakwe, P. Semsari, T. Karlkvist, J. Rosenkranz, and S. C. Chelgani, “A Critical Review on the Mechanisms of Chemical Additives Used in Grinding and Their Effects on the Downstream Processes,” Journal of Materials Research and Technology 9, no. 4 (2020): 8148–62. doi:10.1016/j.jmrt.2020.05.080.
  • B. L. Prasanna, B. S. Rao, P. Lavanya, and S. Maddila, “A Green, an Efficient and Viable Approach for Thesynthesis of Novel 4H-Pyran-Indolin-2-One Derivatives via a One-Pot Reaction by Grinding Method,” Chemical Data Collections 37 (2022): 100804. doi:10.1016/j.cdc.2021.100804.
  • H. Ahankar, A. Ramazani, K. Ślepokura, and V. Kinzhybalo, “Malic Acid as an Effective and Valuable Bioorganocatalyst for One-Pot, Three-Component Synthesis of Pyrrolidinone Derivatives,” Arkivoc 2022, no. 3 (2021): 27–0. doi:10.24820/ark.5550190.p011.595.
  • N. G. Khaligh, K. F. Chong, T. Mihankhah, S. Titinchi, M. R. Johan, and J. J. Ching, “An Efficient Synthesis of Pyrrolidinone Derivatives in the Presence of 1, 1′-Butylenebis (3-Sulfo-3H-Imidazol-1-Ium) Chloride,” Australian Journal of Chemistry 71, no. 8 (2018): 566–72. doi:10.1071/CH18246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.