123
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergism of Ultrasound and Choline Hydroxide for the Synthesis of the Azlactone Derivatives

ORCID Icon, , , , &
Pages 3546-3556 | Received 07 Feb 2022, Accepted 23 Apr 2022, Published online: 06 May 2022

References

  • M. Eissen, J. O. Metzger, E. Schmidt, and U. Schneidewind, “The Central Theme 10 Years after Rio – Concepts on the Contribution of Chemistry to a Sustainable Development,” Angewandte Chemie International Edition 41, no. 3 (2002): 414–36. doi:10.1002/1521-3773(20020201)41:3<414::AID-ANIE414>3.0.CO;2-N.
  • B. Mandal, “Alternate Energy Sources for Sustainable Organic Synthesis,” ChemistrySelect 4, no. 28 (2019): 8301–10. doi:10.1002/slct.201901653.
  • F. Shirini, K. Rad-Moghadam, and S. Akbari-Dadamahaleh, “Application of Ionic Liquids in Multicomponent Reactions,” Green Solvents II. Dordrecht: Springer, 289–334. doi:10.1007/978-94-007-2891-2_12.
  • Anaí Duarte, Wilson Cunico, Claudio M. P. Pereira, Alex F. C. Flores, Rogério A. Freitag, and Geonir M. Siqueira, “Ultrasound Promoted Synthesis of Thioesters from 2-Mercaptobenzoxa(Thia)Zoles,” Ultrasonics Sonochemistry 17, no. 2 (2010): 281–3. doi:10.1016/j.ultsonch.2009.08.004.
  • R. M. Srivastava, R. A. W. Neves Filho, C. A. da Silva, and A. J. Bortoluzzi, “First Ultrasound-Mediated One-Pot Synthesis of N-Substituted Amides,” Ultrasonics Sonochemistry 16, no. 6 (2009): 737–42. doi:10.1016/j.ultsonch.2009.04.006.
  • J. L. Petrier and C. Lucche, “Synthetic Organic Sonochemistry,” in Google Search, ed. J.-L. Luche (New York: Plenum Press, 1998), Chap. 2, 53–6.
  • B. Toukoniitty, E. Toukoniitty, P. Mäki-Arvela, J.-P. Mikkola, T. Salmi, D. Yu Murzin, and P. J. Kooyman, “Effect of Ultrasound in Enantioselective Hydrogenation of 1-Phenyl-1,2-Propanedione: Comparison of Catalyst Activation, Solvents and Supports,” Ultrasonics Sonochemistry 13, no. 1 (2006): 68–75. doi:10.1016/j.ultsonch.2004.11.001.
  • E. Kowsari and M. Mallakmohammadi, “Ultrasound Promoted Synthesis of Quinolines Using Basic Ionic Liquids in Aqueous Media as a Green Procedure,” Ultrasonics Sonochemistry 18, no. 1 (2011): 447–54. doi:10.1016/j.ultsonch.2010.07.020.
  • R. R. Deshmukh, R. Rajagopal, and K. V. Srinivasan, “Ultrasound Promoted C–C Bond Formation: Heck Reaction at Ambient Conditions in Room Temperature Ionic Liquids,” Chemical Communications 1, no. 17 (2001): 1544–5. doi:10.1039/b104532f.
  • G. D. Yadav and M. S. M. M. Rahuman, “Synergism of Ultrasound and Solid Acids in Intensification of Friedel–Crafts Acylation of 2-Methoxynaphthalene with Acetic Anhydride,” Ultrasonics Sonochemistry 10, no. 3 (2003): 135–8. doi:10.1016/S1350-4177(03)00091-9.
  • Junke Wang, Yingxiao Zong, Rugang Fu, Yuying Niu, Guoren Yue, Zhengjun Quan, Xicun Wang, and Yi Pan, “Poly(4-Vinylpyridine) Supported Acidic Ionic Liquid: A Novel Solid Catalyst for the Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones under Ultrasonic Irradiation,” Ultrasonics Sonochemistry 21, no. 1 (2014): 29–34. doi:10.1016/j.ultsonch.2013.05.009.
  • M. A. Pasha, V. P. Jayashanka, K. N. Venugopala, and G. K. Rao, “Zinc Oxide (ZnO): An Efficient Catalyst for the Synthesis of 4-Arylmethylidene-2-Phenyl 5(4H)-Oxazolones Having Antimicrobial Activity,” Journal of Pharmacology and Toxicology 2, no. 3 (2007): 264–70. doi:10.3923/jpt.2007.264-70.
  • N. Kushwaha and S. Kushwaha, “Synthetic Approaches and Biological Significance of Oxazolone Moieties: A Review,” Biointerface Research in Applied Chemistry 12, no. 5 (2021): 6460–86. doi:10.33263/briac125.64606486.
  • P. D. Croce, R. Ferraccioli, and C. La. Rosa, “Reaction of 2, 4-Diphenyl-4, 5-Dihydro-1, 3-Oxazol-5-One with 4-Phenyl-N-Tosyl-1azabuta-1, 3-Diene; C-C versus C-N Double Bond Addition,” Jornal of the Chemical Society Perkin Transactions 1, no. 17 (1994): 2499. doi:10.1039/P19940002499.
  • R. Cannella, F. Clerici, M. L. Gelmi, M. Penso, and D. Pocar, “A New Synthesis of Functionalized 2-Alkylidenetetrahydro-5-Furanones by Tandem Alkylation and Translactonization Reactions of 5(4H)-Oxazolones,” The Journal of Organic Chemistry 61, no. 5 (1996): 1854–6. doi:10.1021/jo951213n.
  • N. S. Thombare, N. Aggarwal, R. Kumar, and M. Gopal, “Synthesis of 2-Furyl-4-Arylidene-5(4H)-Oxazolones as New Potent Antibacterial Agents against Phytopathogenic and Nitrifying Bacteria,” Journal of Environmental Science and Health Part-B Pesticides, Food Contaminants, and Agricultural Wastes 47 (2014): 37–41. doi:10.1080/03601234.2012.640916.
  • P. Taylor, “4-Aryliden-2-Methyloxazol-5 (4H) - One as a New Scaffold for Selective Reversible MAGL Inhibitors 4-Aryliden-2-Methyloxazol-5 (4 H) - One as a New Scaffold for Selective Reversible MAGL Inhibitors,” Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. 1 (2015): 137–46. doi:10.3109/14756366.2015.1010530.
  • A. Scala, A. Piperno, N. Micale, F. Christ, and Z. Debyser, “Synthesis and anti-HIV Profile of a Novel Tetrahydroindazolylbenzamide Derivative Obtained by Oxazolone Chemistry,” ACS Medicinal Chemistry Letters 10, no. 4 (2019): 398. doi:10.1021/acsmedchemlett.8b00511.
  • S. Bala, M. Saini, and S. Kambhoj, “Methods for Synthesis of Oxazolones: A Review,” International Journal of ChemTech Research 3, no. 3 (2011): 1102–8.
  • Ahmed S. Abdel-Aty, “Pesticidal Effects of Some Imidazolidine and Oxazolone Derivatives,” World Journal of Agricultural Science 5, no. 1 (2009): 105–13.
  • P. B. Hiremath and K. Kantharaju, “Zinc Dust Catalysed Efficient Synthesis of 4-Arylidene-2-Phenyl-5(4H)-Oxazolones,” Indian Journal of Chemistry - Section B 59 B, no. 7 (2020): 1010–5.
  • M. Kidwai and R. Kumar, “A Novel Route to 4-Arylidene-2-Phenyl-5(4h)-Oxazolones,” Organic Preparations and Procedures International 30, no. 4 (1998): 451–3. doi:10.1080/00304949809355308.
  • C. F. Hoyng, M. McKenna, and K. Novak, “Azlactone Synthesis. 2-Phenyl-2-Oxazolin-5-One,” Synthetic Communications 10, no. 10 (1980): 761–6. doi:10.1080/00397918008061840.
  • A. Gaset and J. P. Gorrichon, “The Use of Ion-Exchange Resins in the Perkin Reaction for the Synthesis of Azlactones from Aldehydes of Plant Origin,” Synthetic Communications 12, no. 1 (1982): 71–9. doi:10.1080/00397918208080069.
  • S. Bhandari and V. Kasana, “Synthesis and Herbicidal Activity of 4-Benzylidene-2-Phenyl Oxazol-5(4H)-One Derivatives Using l-Proline as Catalyst,” Asian Journal of Chemistry 30, no. 8 (2018): 1717–22. doi:10.14233/ajchem.2018.21251.
  • M. Jagadale, A. Naikwade, R. Salunkhe, M. Rajmane, and G. Rashinkar, “An Ionic Liquid Gel: A Heterogeneous Catalyst for Erlenmeyer-Plochl and Henry Reactions,” New Journal of Chemistry 42, no. 13 (2018): 10993–1005. doi:10.1039/C8NJ00367J.
  • C. Manikandan and K. Ganesan, “Silica-Supported Solvent Approaches More Facile than the Conventional for Erlenmeyer Synthesis with Our Pyridinium Salts,” Journal of Heterocyclic Chemistry 55, no. 4 (2018): 929–34. doi:10.1002/jhet.3120.
  • A. M. L. Punna Rao, A. Sridhar Rao, M. Saratchandra Babu, and M. Krishnaji Rao, “Triphenylphosphine (PPh3) Catalyzed Erlenmeyer Reaction for Azlactones under Solvent-Free Conditions,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 429–35. doi:10.1002/jhet.2600.
  • S. A. Jadhav, R. S. Dhamnaskar, A. P. Sarkate, and R. K. Pardeshi, “Rapid One-Pot Microwave Assisted Synthesis of 4-Arylidene-2-Phenyl-5(4h)-Oxazolones or Azlactones,” Heterocyclic Letters 7, no. 3 (2017): 683–91.
  • G. S. Mitkari, S. A. Jadhav, and S. R. Vaidya, “Water-Peg Mediated One-Pot Synthesis of 4-Arylidene-2-Phenyl-5(4H)-Oxazolones or Azlactones,” Heterocyclic Letters 7, no. 2 (2017): 2230–2.
  • H. Kiyani and S. Aslanpour, “Synthesis of Erlenmeyer-Plöchl Azlactones Promoted by 5-Sulfosalicylic Acid,” Heterocycles 94, no. 7 (2017): 1314–21. doi:10.3987/COM-17-13711.
  • M. A. Bodaghifard, H. Moghanian, A. Mobinikhaledi, and F. Esmaeilzadeh, “Microwave-Assisted Efficient Synthesis of Azlactones Using Zeolite NaY as a Reusable Heterogeneous Catalyst,” Inorganic and Nano-Metal Chemistry 47, no. 6 (2017): 845–9. doi:10.1080/15533174.2016.1212242.
  • A. F. M. Fahmy, A. A. El-Sayed, and M. M. Hemdan, “Multicomponent Synthesis of 4-Arylidene-2-Phenyl-5(4H)-Oxazolones (Azlactones) Using a Mechanochemical Approach,” Chemistry Central Journal 10, no. 1 (2016): 1–7. doi:10.1186/s13065-016-0205-9/tables/2.
  • N. Rostamizadeh, A. Khajeh-Amiri, and H. Moghanian, “Microwave-Assisted Erlenmeyer Synthesis of Azlactones Catalyzed by MgO/Al2O3 under Solvent-Free Conditions,” Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 46, no. 5 (2016): 631–4. doi:10.1080/15533174.2014.989575.
  • M. Reza and P. Heravi, “Erlenmeyer Synthesis of Azlactones by Sonochemical Reaction in Ionic Liquids,” Journal of Chemical Technology and Metallurgy 44, no. 1 (2009): 86–90.
  • R. Kurane, S. Khanapure, D. Kale, R. Salunkhe, and G. Rashinkar, “An Expedient Synthesis of Oxazolones Using a Cellulose Supported Ionic Liquid Phase Catalyst,” RSC Advances 6, no. 50 (2016): 44135–44. doi:10.1039/C6RA03873E.
  • A. Mobinikhaledi, H. Moghanian, and S. Pakdel, “Microwave-Assisted Efficient Synthesis of Azlactone Derivatives Using 2-Aminopyridine-Functionalized Sphere SiO2 Nanoparticles as a Reusable Heterogeneous Catalyst,” Chinese Chemical Letters 26, no. 5 (2015): 557–63. doi:10.1016/j.cclet.2014.12.007.
  • S. Paul, P. Nanda, R. Gupta, and A. Loupy, “Calcium Acetate Catalyzed Synthesis of 4-Arylidene-2-Phenyl-5(4H)-Oxazolones under Solvent-Free Conditions,” Tetrahedron Letters 45, no. 2 (2004): 425–7. doi:10.1016/j.tetlet.2003.10.125.
  • K. A. Monk, D. Sarapa, and R. S. Mohan, “Bismuth (III) Acetate: A New Catalyst for Preparation of Azlactones via the Erlenmeyer Synthesis,” Synthetic Communications 30, no. 17 (2000): 3167–70. doi:10.1080/00397910008086926.
  • M. Parveen, F. Ahmad, A. M. Malla, S. Azaz, M. R. Silva, and P. S. P. Silva, “[Et3NH][HSO4]-Mediated Functionalization of Hippuric Acid: An Unprecedented Approach to 4-Arylidene-2-Phenyl-5(4H)-Oxazolones,” RSC Advances 5, no. 65 (2015): 52330–46. doi:10.1039/C5RA09290F.
  • S. A. Jadhav, A. P. Sarkate, M. Farooqui, and D. B. Shinde, “Greener Approach: Ionic Liquid [Et3NH][HSO4]-Catalyzed Multicomponent Synthesis of 4-Arylidene-2-Phenyl-5(4H)Oxazolones under Solvent-Free Condition,” Synthetic Communications 47, no. 18 (2017): 1676–83. doi:10.1080/00397911.2017.1340649.
  • S. Fozooni, A. M. Tikdari, and H. Hamidian, “Comparison of Clinoptilolite, Analcime and Yugawaralite for Synthesis of Unsaturated 5(4H)-Oxazolones in Solvent-Free Condition and Microwave Irrudiation,” Heterocyclic Communications 14, no. 1–2 (2008): 77–82. doi:10.1515/HC.2008.14.1-2.77.
  • V. Siddaiah, G. M. Basha, D. Sudhakar, R. Srinuvasarao, and Y. S. Kumar, “Practical Synthesis of 4-Benzylidene-2-Phenyl-5(4H)-Oxazolones,” Synthetic Communications 43, no. 16 (2013): 2191–7. doi:10.1080/00397911.2012.696301.
  • H. Moghanian, M. Shabanian, and H. Jafari, “Microwave-Assisted Efficient Synthesis of Azlactone Derivatives Using TsCl/DMF under Solvent-Free Conditions,” Comptes Rendus Chimie 15, no. 4 (2012): 346–9. doi:10.1016/j.crci.2011.11.011.
  • Y. S. Rao, “Reactions in Polyphosphoric Acid. I. New Stereospecific Synthesis of the E Isomers of 2-Phenyl-4-Arylmethylene-2-Oxazolin-5-Ones,” The Journal of Organic Chemistry 41, no. 4 (1976): 722–5. doi:10.1021/jo00866a037.
  • A. R. Khosropour, M. M. Khodaei, and S. J. Hoseini Jomor, “A New, Efficient and Chemoselective One-Pot Protocol for Synthesis of 4-Arylidene-2-Phenyl-5(4H)-Oxazolones from Aryl Aldehyde Bisulfite Adducts Promoted by POCl3,” Journal of Heterocyclic Chemistry 45, no. 3 (2008): 683–6. doi:10.1002/jhet.5570450308.
  • N. Azizi and M. Edrisi, “Biodegradable Choline Hydroxide Promoted Environmentally Benign Thiolysis of Epoxides,” Tetrahedron Letters 57, no. 5 (2016): 525–8. doi:10.1016/j.tetlet.2015.12.080.
  • A. M. de Castro, L. A. Neves, M. C. Corvo, E. J. Cabrita, and J. G. Crespo, “Effect of Carbonic Anhydrase on CO2 Absorption Promoted by Choline Hydroxide Using Supported Liquid Membranes,” Separation and Purification Technology 280 (2022): 119921. doi:10.1016/j.seppur.2021.119921.
  • S. Kumar, A. Kaur, and V. Singh, “Efficient Protocol for Aza-Michael Addition of N-Heterocycles to α,β-Unsaturated Compound Using [Ch]OH and [n-Butyl Urotropinium]OH as Basic Ionic Liquids in Aqueous/Solvent Free Conditions,” Synthetic Communications 49, no. 2 (2019): 193–201. doi:10.1080/00397911.2018.1546401.
  • S. N. Vajekar and G. S. Shankarling, “Choline Hydroxide Promoted Sustainable One-Pot Three-Component Synthesis of 1H-Pyrazolo[1,2-a]Pyridazine-2-Carbonitriles under Solvent-Free Conditions,” Synthetic Communications 50, no. 8 (2020): 1147–58. doi:10.1080/00397911.2020.1720736.
  • Lingjun Li, Lili Bai, Jingjing Li, Wanlu Feng, Dongshuang Fan, Qixing Li, and Anlian Zhu, “One-Pot Synthesis of 2-Amino-4h-Chromenes Derivatives in Aqueous Solution of Choline Hydroxide,” ChemistrySelect 5, no. 40 (2020): 12494–9. doi:10.1002/slct.202003076.
  • P. A. Conway, K. Devine, and F. Paradisi, “A Simple and Efficient Method for the Synthesis of Erlenmeyer Azlactones,” Tetrahedron 65, no. 15 (2009): 2935–8. doi:10.1016/j.tet.2009.02.011.
  • S. Chandrasekhar and P. Karri, “Aromaticity in Azlactone Anions and Its Significance for the Erlenmeyer Synthesis,” Tetrahedron Letters 47, no. 32 (2006): 5763–6. doi:10.1016/j.tetlet.2006.06.006.
  • M. Crawford and W. T. Little, “The Erlenmeyer Reaction with Aliphatic Aldehydes, 2-Phenyloxazol-5-One Being Used instead of Hippuric Acid,” Journal of the Chemical Society (Resumed) (1959): 729–31. doi:10.1039/jr9590000729.
  • D. T. Nagre, A. U. Khandebharad, S. R. Sarda, B. K. Dhotre, and B. R. Agrawal, “Synthesis of 3-Substituted Indoles Using Deep Eutetic Solvent and Ultrasound,” Organic Preparations and Procedures International 53, no. 3 (2021): 278–83. doi:10.1080/00304948.2021.1875775.
  • G. Cravotto and P. Cintas, “Power Ultrasound in Organic Synthesis: Moving Cavitational Chemistry from Academia to Innovative and Large-Scale Applications,” Chemical Society Reviews 35, no. 2 (2006): 180–96. doi:10.1039/b503848k.
  • Dan Huang, Kaiyang Men, Dapeng Li, Tao Wen, Zhongliang Gong, Bengt Sunden, and Zan Wu, “Application of Ultrasound Technology in the Drying of Food Products,” Ultrasonics Sonochemistry 63 (2020): 104950. doi:10.1016/j.ultsonch.2019.104950.
  • N. F. Gajardo-Parra, V. P. Cotroneo-Figueroa, P. Aravena, V. Vesovic, and R. I. Canales, “Viscosity of Choline Chloride-Based Deep Eutectic Solvents: Experiments and Modeling,” Journal of Chemical & Engineering Data 65, no. 11 (2020): 5581–92. doi:10.1021/acs.jced.0c00715.
  • Y. Wang, C. Ma, C. Liu, X. Lu, X. Feng, and X. Ji, “Thermodynamic Study of Choline Chloride-Based Deep Eutectic Solvents with Water and Methanol,” Journal of Chemical & Engineering Data 65, no. 5 (2020): 2446–57. doi:10.1021/acs.jced.9b01113.
  • S. Chandrasekhar and P. Karri, “Erlenmeyer Azlactone Synthesis with Aliphatic Aldehydes under Solvent-Free Microwave Conditions,” Tetrahedron Letters 48, no. 5 (2007): 785–6. doi:10.1016/j.tetlet.2006.11.174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.