181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficient Synthesis of Substituted Aza-Anthraquinones via Michael Addition–Elimination and Intramolecular Cyclization Reactions under Mild Conditions and Their Fluorescent Properties

, &
Pages 3557-3567 | Received 21 Feb 2022, Accepted 27 Apr 2022, Published online: 23 May 2022

References

  • (a) S. Spyroudis, “Hydroxyquinones: Synthesis and Reactivity" Molecules 5 (2000): 1291; (b) S. Ganapaty, P. S. Thomas, G. Karagianis, P. G. Waterman, and R. Brun," Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis” Phytochemistry, 67 (2006): 1950; (c) V. K. Tandon, H. K. Maurya, A. Tripathi, G. B. ShivaKesva, P. K. Shukla, A. Srivastava, and D. Panda, “2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents” European Journal of Medicinal Chemistry 44 (2009): 1086; (d) V. K. Tandon, H. K. Maurya, D. B. Yadav, A. Tripathi, M. Kumar and P.K. Shukla, “Naphtho[2,3-b][1,4]-thiazine-5,10-diones and 3-substituted-1,4-dioxo-1,4-dihydronaphthalen-2-yl-thioalkanoate derivatives: Synthesis and biological evaluation as potential antibacterial and antifungal agents” Bioorganic and Medicinal Chemistry Letters 16 (2006): 5883.
  • (a) Q. Huang, G. Lu, H.-M. Shen, M. C. M. Chung, and C. N. Ong, “Anti-cancer properties of anthraquinones from rhubarb” Medicinal Research Reviews 27 (2007): 609–630; (b) H. Hussain, A. Al-Harrasi, A. Al-Rawahi, I. R. Green, R. Csuk, I. Ahmed, A. Shah, G. Abbas, N. U. Rehman, and R. Ullah, “A fruitful decade from 2005-2014 for anthraquinone patents” Expert Opinion on Therapeutic Patents 25 (2015): 1053; (c) B. Devi Bala, S. Muthusaravanan, and S. Perumal, “An expedient synthesis of 1,2-dihydrobenzo[g]quinoline-5,10-diones via copper(II) triflate-catalyzed intramolecular cyclization of N-propargylaminonaphthoquinones” Tetrahedron Letters 54 (2013) 3735–9.
  • R. J. White and F. E. Durr, “Development of mitoxantrone” Investigational New Drugs 3 (1985): 85–93.
  • N. Soonthornchareonnon, K. Suwanborirux, R. Bavovada, C. Patarapanich, and J. M. Cassady, “New Cytotoxic 1-Azaanthraquinones and 3-Aminonaphthoquinone from the Stem Bark of Goniothalamus Marcanii,” Journal of Natural Products 62, no. 10 (1999): 1390–4. doi:10.1021/np990197c.
  • S. Lang and U. Groth, “Total Syntheses of Cytotoxic, Naturally Occurring Kalasinamide, Geovanine, and Marcanine A,” Angewandte Chemie (International Edition in English) 48, no. 5 (2009): 911–13. doi:10.1002/anie.200804388.
  • P. Claes, D. Cappoen, B. M. Mbala, J. Jacobs, B. Mertens, V. Mathys, L. Verschaeve, K. Huygen, and N. De Kimpe, “Synthesis and Antimycobacterial Activity of Analogues of the Bioactive Natural Products Sampangine and Cleistopholine,” European Journal of Medicinal Chemistry 67 (2013): 98–110. doi:10.1016/j.ejmech.2013.06.010.
  • M. N. Gandy, and M. J. Piggott, “Synthesis of Kalasinamide, a Putative Plant Defense Phototoxin,” Journal of Natural Products 71, no. 5 (2008): 866–8.
  • (a) P. Tuchinda, M. Pohmakotr, B. Munyoo, V. Reutrakul, and T. Santisuk, “An Azaanthracene Alkaloid from Polyalthia Suberosa,” Phytochemistry 53, (2000): 1079–1082; (b) E. Cavalletti, L. Crippa, P. Mainardi, N. Oggioni, R. Cavagnoli, O. Bellini, and F. Sala, “Pixantrone (BBR 2778) has reduced cardiotoxic potential in mice pretreated with doxorubicin: Comparative studies against doxorubicin and mitoxantrone” Investigational New Drugs 25 (2007): 187–95. doi:10.1016/s0031-9422(99)00535-x.
  • (a) K. W. Wellington and N. I. Kolesnikova, “A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity” Bioorganic & Medicinal Chemistry 20 (2012): 4472–81; (b) J.-C. Lien, L.-J. Huang, C.-M. Teng, J.-P. Wang, and S.-C. Kuo “Synthesis of 2-Alkoxy 1,4-Naphthoquinone Derivatives as Antiplatelet, Antiinflammatory, and Antiallergic Agents” Chemical and Pharmaceutical Bulletin 50 (2002): 672–74; (c) I. Sieveking, P. Thomas, J. C. Estévez, N. Quiñones, M. A. Cuéllar, J. Villena, C. Espinosa-Bustos, A. Fierro, R. A. Tapia, J. D. Maya, et al. “2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities” Bioorganic & Medicinal Chemistry 22 (2014): 4609–20.
  • (a) F. Tuyun, N. Bayrak, H. Yıldırım, N. Onul, E. M. Kara, B. O. Celik “Synthesis and in vitro biological evaluation of aminonaphthoquinones and benzo[b]phenazine-6,11-dione derivatives as potential antibacterial and antifungal compounds” Journal of Chemistry 8 (2015): 645902; (b) J. S. Kim, H.-K. Rhee, H. J. Park, I.-K. Lee, S. K. Lee, M.-E. Suh, H. J. Lee, C.-K. Ryu, and H.-Y. P. Choo “Synthesis of 6-chloroisoquinoline-5,8-diones and pyrido[3,4-b]phenazine-5,12-diones and evaluation of their cytotoxicity and DNA topoisomerase II inhibitory activity” Bioorganic & Medicinal Chemistry 15 (2007): 451–7.
  • (a) S. Kumar, W. P. Malachowski, J. B. DuHadaway, J. M. LaLonde, P. J. Carroll, D. Jaller, R. Metz, G. C. Prendergast, A.J. Muller “Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors” Journal of Medicinal Chemistry 51 (2008): 1706–18; (b) A. Pereira, E. Vottero, M. Roberge, A. G. Mauk, R. J. Andersen “Indoleamine 2,3-Dioxygenase Inhibitors from the Northeastern Pacific Marine Hydroid Garveiaannulata" Journal of Natural Products 69 (2006): 1496–9.
  • I. Sieveking, P. Thomas, J. C. Estévez, N. Quiñones, M. A. Cuéllar, J. Villena, C. Espinosa-Bustos, A. Fierro, R. A. Tapia, J. D. Maya, et al., “2-Phenylaminonaphthoquinones and Related Compounds: synthesis, Trypanocidal and Cytotoxic Activities,” Bioorganic & Medicinal Chemistry 22, no. 17 (2014): 4609–20. doi:10.1016/j.bmc.2014.07.030.
  • (a) G. L. Baughman and E. J. Weber, “Transformation of Dyes and Related Compounds in Anoxic Sediment: kinetics and Products,” Environmental Science & Technology 28, no. 2 (1994): 267–276; (b) R. Yang, Y. Chen, L. Pan, Y. Yang, Q. Zheng, Y. Hu, Y. Wang, L. Zhang, Y. Sun, Z. Li, et al. “Design, synthesis and structure-activity relationship study of novel naphthoindolizine and indolizinoquinoline-5,12-dione derivatives as IDO1 inhibitors” Bioorganic &Medicinal Chemistry 26(2018)4886-4897; (c) A. P. Krapcho, J. J. Landi, P. Hacker, and J. J. McCormack “Synthesis and antineoplastic evaluations of 5,8-bis[(aminoalkyl)amino]-1-azaanthracene-9,10-diones” Journal of Medicinal Chemistry 28 (1985): 1124–6; (d) S. Mekideche and L. Désaubry “ Tandem Diels–Alder-manganese dioxide mediated oxidation reaction. A short route to marcanines” Tetrahedron Letters 49 (2008): 5268–70; (e) F. Catti, P. S. Kiuru, A. M. Slawin, and N. J. Westwood "The synthesis of highly functionalised pyridines using Ghosez-type reactions of dihydropyrazoles" Tetrahedron 64 (2008): 9561–6; (f) C.-P. Chuang, P.-J. Tsai, C.-B. Kao, and W.-R. Chiow “Manganese(III) Acetate Mediated Oxidative Radical Cyclizations of N-(2-Alkenylaryl)-Substituted Enamines” Synthesis 46 (2013): 175–82. doi:10.1021/es00051a013.
  • (a) B. Pranabes, P. Sanjay, and A. R. Das “Facile synthesis of pyridopyrimidine and coumarinfused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium” RSC Advances 3, (2013): 3203–8; (b) S. Moumita, P. Koyel, and R. D. Asish, RSC Advances 6 (2016): 55033–8; (c) M. Rajeswari, S. Pooja, and M. Jitender “A facile and green approach for the synthesis of spiro[naphthalene-2,5-pyrimidine]-4- carbonitrile via one-pot three-component condensation reaction using DBU as catalyst” RSC Advances 6 (2016): 1307–12; (d) K. Nazia, P. G. Partha, P. Gargi, and R. D. Asish “Graphene oxide nanosheets: a highly efficient and reusable carbocatalyst catalyzes the Michael-cyclization reactions of 4-hydroxycoumarins, 4-hydroxypyrone and 4-hydroxy-1-methylquinolinone with chalcone derivatives in aqueous media” RSC Advances 5 (2015): 60199–207; (e) K. Nazia, M. Prasun, and R. D. Asish “A practical carbocatalysis by Graphene Oxide nanosheets in aqueous medium towards the synthesis of diversified dibenzo[1,4]diazepine scaffold"RSC Advances 6 (2016): 88904–10; (f) P. G. Partha and R. D. Asish “Nanocrystalline and Reusable ZnO Catalyst for the Assembly of Densely Functionalized 4H-Chromenes in Aqueous Medium via One-Pot Three Component Reactions: A Greener “NOSE” Approach” Journal of Organic Chemistry 78 (2013): 6170–81.
  • (a) M. Al-Alshaikh and S. Lahsasni “Synthesis of Novel 2,3-Disubstituted 1,4-Naphthoquinone Derivatives Containing Indole, Quinoline, Thiazole and Imidazole Moieties” Asian Journal of Chemistry 25 (2013): 10199–206; (b) N. Fei, H. Yin, S. Wang, H. Wang, and Z.-J. Yao “CuCl(2)-Promoted 6-endo-dig Chlorocyclization and Oxidative Aromatization Cascade: Efficient Construction of 1-Azaanthraquinones from N-Propargylaminoquinones” Organic Letters 13 (2011): 4208–11; (c) C. Jiang, M. Xu, S. Wang, H. Wang, and Z. J. Yao “Efficient Synthesis of Phenanthridines Using Hendrickson Reagent Initiated Cascade Reaction under Mild Conditions” Journal of Organic Chemistry 75 (2010): 4323–5; (d) A. Borah, A. Sharma, H. Hazarika, K. Sharma, and P. Gogoi “Synthesis of 1-Azaanthraquinone: Sequential C-N Bond Formation/Lewis Acid Catalyzed Intramolecular Cyclization Strategy” Journal of Organic Chemistry 82 (2017): 8309–16; (e) H. Xiang, J. Chen, Z. Miao, and C. Yang "Cascade synthesis of novel functionalized pyridine fused coumarins in aqueous medium” RSC Advances 4 (2014): 16132–5; (f) X. Zhang, Q. He, H. Xiang, S. Song, Z. Miao, and C. Yang “Rapid access to α-carbolines via a one-pot tandem reaction of α, β-unsaturated ketones with 2-nitrophenylacetonitrile and the anti-proliferative activities of the products” Organic & Biomolecular Chemistry 12 (2014): 355–61.
  • (a) C. H. Zhang, R. Huang, X. M. Hu, J. Lin, and S. J. Yan, “Three-Component Site-Selective Synthesis of Highly Substituted 5 H-Chromeno-[4,3-b]Pyridines” The Journal of Organic Chemistry 83, (2018): 4981–9; (b) M. Lacova, A. Puchala, E. Solcanyova, J. Lac, P. Kois, J. Chovancova, and D. Rasala, Molecules 10 (2005): 809–21. doi:10.1021/acs.joc.8b00099.
  • (a) D. Liu, Z. Zhang, H. Zhang, and Y. A. Wang “A novel approach towards white photoluminescence and electroluminescence by controlled protonation of a blue fluorophore” Chemical Communications 49 (2013): 10001–3; (b) L. Zhang, S. Hogan, J. Li, S. Sun, C. S. J. Canning, S. J. Zheng, and K. Zhou “Grape skin extract inhibits mammalian intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mice” Food Chemistry 126 (2011): 466–71; (c) W. Deng, I. R. Babu, D. Su, S. Yin, T. J. Begley, and P. C. Dedon “Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation” Edited by Alan G Hinnebusch” PLoS Genetics 11, no. 12 (2015): e1005706. doi:10.1371/journal.pgen.1005706

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.