95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Biological Assessment of New Nucleosides of Pyrido[2,3-d]pyrimidine Derivatives Bearing Ribose and 2-Deoxyribose Moieties

ORCID Icon &
Pages 3568-3587 | Received 18 Jan 2022, Accepted 27 Apr 2022, Published online: 16 May 2022

References

  • M. Saeid, A. Z. Mohammad, Z. Mahmoud, A. A. Diego, K. Abbas, and T. Aria, “An Efficient Catalytic Method for the Synthesis of Pyrido[2,3-d]Pyrimidines as Biologically Drug Candidates by Using Novel Magnetic Nanoparticles as a Reusable Catalyst,” Applied Organometallic Chemistry 32, no. 2 (2017): e4043.
  • G. Guillem, R. Puig de la Bellacasa, R. Estrada-Tejedor, O. J. Teixid, and J. I. Borrell, “Pyrido[2,3-d]Pyrimidin-7(8H)-Ones: Synthesis and Biomedical Applications,” Molecules 24 (2019): 4161.
  • V. J. Ram, D. A. Vanden Berghe, and A. J. Vlietinck, “Pyrido[2,3-d]Pyrimidines and Pyrido[2,3-d; 5-d0]Dipyrimidines as Potential Chemotherapeutic Agents. VIII,” Journal of Heterocyclic Chemistry 25, no. 1 (1988): 217–9. doi:10.1002/jhet.5570250133.
  • H. M. F. Madkour, H. M. F. Madkour, M. A. I. Salem, T. M. Abdel-Rahman, and M. E. Azab, “Reactions of 5-(p-Anisyl)-2-Methyl-7-(p-Tolyl)-4H-Pyrido[2,3-d][1,3]-Oxazin-4-One,” Heterocycles 38, no. 1 (1994): 57. doi:10.3987/COM-91-5873.
  • C. Kurumurthy, P. Sambasiva Rao, B. Veera Swamy, G. Santhosh Kumar, P. Shanthan Rao, B. Narsaiah, L. R. Velatooru, R. Pamanji, and J. Venkateswara Rao, “Synthesis of Novel Alkyltriazole Tagged Pyrido[2,3-d]Pyrimidine Derivatives and Their Anticancer Activity,” European Journal of Medicinal Chemistry 46, no. 8 (2011): 3462–8. doi:10.1016/j.ejmech.2011.05.011.
  • S. Balakrishna Pai, S. H. Liu, Y. L. Zhu, C. K. Chu, and Y. C. Cheng, “Inhibition of Hepatitis B Virus by a Novel L-Nucleoside, 2'-Fluoro-5-Methyl-β-L-Arabinofuranosyl Uracil,” Antimicrobial Agents and Chemotherapy 40, no. 2 (1996): 380–6. doi:10.1128/AAC.40.2.380.
  • J. R. Piper, G. S. McCaleb, J. A. Montgomery, R. L. Kisliuk, Y. Gaumont, and F. M. Sirotnak, “Syntheses and Antifolate Activity of 5-Methyl-5-Deaza Analogues of Aminopterin, Methotrexate, Folic Acid, and N10-Methylfolic Acid,” Journal of Medicinal Chemistry 29, no. 6 (1986): 1080–7. doi:10.1021/jm00156a029.
  • E. M. Abedel Rehim, and M. Abd Ellatif, “Synthesis of Some Novel Pyrido[2,3-d]Pyrimidine and Pyrido[3,2-e] [1,3,4]Triazolo and Tetrazolo[1,5-c]Pyrimidine Derivatives as Potential Antimicrobial and Anticancer Agents,” Journal of Heterocyclic Chemistry 55 (2018): 419.
  • R. K. Robins, and G. H. Hitchings, “Studies on Condensed Pyrimidine Systems. XIX. A New Synthesis of Pyrido [2,3-d] Pyrimidines. The Condensation of 1,3-Diketones and 3-Ketoaldehydes with 4-Aminopyrimidines,” Journal of the American Chemical Society 80, no. 13 (1958): 3449–57. doi:10.1021/ja01546a061.
  • L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. R. Challand, R. A. Earl, and R. Guedj, “Synthesis of Carbocyclic Nucleosides,” Tatrahderon 50, no. 36 (1994): 10611–70. doi:10.1016/S0040-4020(01)89258-9.
  • S. Suzuki, K. Isono, J. Nagtsu, Y. Kawashina, Y. Yamagata, K. Saski, and K. Hashimoto, “Studies on Polyoxins, Antifungal Antibiotics Part IV Isolation of Polyoxins C, D, E, F and G, New Components of Polyoxin Complex,” Agricultural and Biological Chemistry 8 (1966): 817.
  • S. E. S. Abbas, ; R. F. George, E. M. Samir, M. M. Aref, and H. A. Abdel-Aziz, “Synthesis and Anticancer Activity of Some Pyrido[2,3-d]Pyrimidine Derivatives as Apoptosis Inducers and Cyclin-Dependent Kinase Inhibitors,” Future Medicinal Chemistry 11 (2019): 1.
  • A. M. M. Mosselhi, H. A. Shams, and A. G. Adil, “Nucleosides 11: Synthesis of New Derivatives of Pyrido[2,3-d]Pyrimidines and Their Nucleosides,” Nucleosides, Nucleotides and Nuclei Acids 40, no. 2 (2021): 222.
  • N. Kumar, “Pyrido [2,3-d]Pyrimidines and Their Ribofuranosides: Synthesis and Antimicrobial Investigations,” Indian Journal of Chemistry 46b (2007): 702.
  • D. E. Bergstrom, H. Inoue, and P. A. Reddy, “Pyrido[2,3-d]Pyrimidine Nucleosides. Synthesis via Cyclization of C-5-Substituted Cytidines,” The Journal of Organic Chemistry 47, no. 11 (1982): 2174–8. doi:10.1021/jo00132a038.
  • T. L. Su, K. Harada, and K. A. Watanabe, “Synthesis of Pyrido[2,3-d]Pyrimidine Nucleosides from 5-Cyanouridine,” Nucleosides, Nucleotides, and Nucleic Acids 3, no. 5 (1984): 513–24. doi:10.1080/07328318408081286.
  • N. Kumar, G. Singh, and A. K. Yadav, “Synthesis of Some New Pyrido[2,3-d]Pyrimidines and Their Ribofuranosides as Possible Antimicrobial Agents,” Heteroatom Chemistry 12, no. 1 (2001): 52–6. doi:10.1002/1098-1071(2001)12:1<52::AID-HC11>3.0.CO;2-0.
  • A. K. Khalafallah, and M. A. Ahmed, “A Novel and Efficient Method for the Synthesis of 6-Amino-Pyrimidine-2(1H)-Thiones Derivatives, Pyrido [2,3-d] Pyrimidine-2(1H)- Thiones Derivatives and Their Glycosides,” Chemistry International 3 (2017): 469.
  • T. Sangeeta, K. Ashok Yadav, and A. K. Mishra, “Some New Pyrido[2,3-d]Pyridimines and Their Nucleoside of Biological Importance,” E-Journal of Chemistry 7, NO. S1 (2010): S85–S92. doi:10.1155/2010/812567.
  • N. F. H. Mahmoud, and A. El-Sewedy, “Facile Synthesis of Novel Heterocyclic Compounds Based on Pyridine Moiety with Pharmaceutical Activities,” Journal of Heterocyclic Chemistry 57, no. 4 (2020): 1559–72. doi:10.1002/jhet.3881.
  • M. A. S. Gouda, M. A. I. Salem, and N. F. H. Mahmoud, “3D-Pharmacophore Study Molecular Docking and Synthesis of Pyrido[2,3-d]Pyrimidine-4(1H) Dione Derivatives with in Vitro Potential Anticancer and Antioxidant Activities,” Journal of Heterocyclic Chemistry 57, no. 11 (2020): 3988–4006. doi:10.1002/jhet.4109.
  • N. F. H. Mahmoud, and M. G. Balamon, “Synthesis of Various Fused Heterocyclic Rings from Thiazolopyridine and Their Pharmacological and Antimicrobial Evaluations,” Journal of Heterocyclic Chemistry 57, no. 8 (2020): 3056–70. doi:10.1002/jhet.4011.
  • N. F. H. Mahmoud, and A. El-Sewedy, “Multicomponent Reactions, Solvent-Free Synthesis of 2-Amino-4-Aryl-6-Substituted Pyridine-3,5-Dicarbonitrile Derivatives, and Corrosion Inhibitors Evaluation,” Journal of Chemistry 2018 (2018): 1–9. doi:10.1155/2018/7958739.
  • N. F. H. Mahmoud, and E. A. Ghareeb, “Synthesis of Novel Substituted Tetrahydropyrimidine Derivatives and Evaluation of Their Pharmacological and Antimicrobial Activities,” Journal of Heterocyclic Chemistry 56, no. 1 (2019): 81–91. doi:10.1002/jhet.3374.
  • N. F. H. Mahmoud, E. A. El-Bordany, and G. A. Elsayed, “Synthesis and Pharmacological Activities of Pyrano[2,3-d]Pyrimidine and Pyrano[2,3-d]Pyrimidine-5-One Derivatives as New Fused Heterocyclic Systems,” Journal of Chemistry 2017 (2017): 1–7. doi:10.1155/2017/5373049.
  • N. F. H. Mahmoud, and M. A. El-Saghier, “Multi-Component Reactions, Solvent-Free Synthesis of Substituted Pyranopyridopyrimidine under Different Conditions Using ZnO Nanoparticles,” Journal of Heterocyclic Chemistry 56, no. 6 (2019): 1820–4. doi:10.1002/jhet.3556.
  • N. F. H. Mahmoud, G. A. Elsayed, and M. F. Ismail, “Synthesis of Various Fused Heterocyclic Rings from Oxoindenyl Esters and Their Pharmacological and Antimicrobial Evaluations,” Journal of Heterocyclic Chemistry 55, no. 2 (2018): 465–74. doi:10.1002/jhet.3065.
  • G. A. Elsayed, N. F. H. Mahmoud, and S. A. Rizk, “Solvent-Free Synthesis and Antimicrobial Properties of Some Novel Furanone and Spiropyrimidone Derivatives,” Current Organic Synthesis 15, no. 3 (2018): 404–13. doi:10.2174/1570179414666170830124447.
  • S. Kambe, K. Saito, and H. Kishi, “A One-Step Synthesis of 4-Oxo-2-Thioxopyrimidine Derivatives by the Ternary Condensation of Ethyl Cyanoacetate, Aldehydes and Thiourea,” Synthesis 4 (1979): 287.
  • F. Vincent, B. Sophie, F. Delphine, and P. Daniel, “A Novel Synthesis of D-Galactofuranosyl, D-Glucofuranosyl and D-Mannofuranosyl 1-Phosphates Based on Remote Activation of New and Free Hexofuranosyl Donors,” Bioorganic & Medicinal Chemistry Letters 12 (2002): 3515.
  • Y. Ichikawa, H. Kubota, K. Fujita, T. Okauchi, and K. Narasaka, “Stereoselective β-C-and β-S-Glycosylation of 2-Deoxyribofuranose Controlled by the 3-Hydroxy Protective Group,” Bulletin of the Chemical Society of Japan 62, no. 3 (1989): 845–52. doi:10.1246/bcsj.62.845.
  • M. Teruaki, H. Noriyuki, N. Minoru, and U. Hiromi, “Catalytic Stereoselective Synthesis of Pyrimidine 2-Deoxyribonucleosides Chemistry,” Chemistry Letters 25, no. 2 (1996): 99–100. doi:10.1246/cl.1996.99.
  • D. K. Barma, A. Bandyopadhyay, H. Capdevila, and J. R. Falck, “Dimethylthiocarbamate (DMTC): An Alcohol Protecting Group,” Organic Letters 5, no. 25 (2003): 4755–7. doi:10.1021/ol0354573.
  • K. Masaru, N. Yutaka, I. Takuma, and T. Seiji, “Fluorous Dimethylthiocarbamate (FDMTC) Protecting Groups for Alcohols,” Tetrahedron Letters 47 (2006): 6309.
  • B. Bennua-Skalmowski, K. Krolikiewicz, and H. Vorbriiggen, “A New Simple Nucleoside Synthesis,” Tetrahedron Letters 36, no. 43 (1995): 7845–8. doi:10.1016/0040-4039(95)01667-7.
  • H. Vorbruggen, “Adventures in Silicon-Organic Chemistry,” Accounts of Chemical Research 28 (1995): 509.
  • U. Niedball, and H. Vorbrugg, “Synthesis of Nucleosides. 9. General Synthesis of N-Glycosides. I. Synthesis of Pyrimidine Nucleosides,” Journal of Organic Chemistry 39 (1974): 3654.
  • V. Helmut, K. Konrad, and B. Barbel, “Nucleoside Synthesis with Trimethylsilyl Triflate and Perchlorate as Catalysts,” Chemische Berichte 114 (1981): 1234.
  • A. Hajime, “Stereoselecttive Synthesis of Anomers of 5-Substituted 2′Deoxyuridine,” Bulletin of the Chemical Society of Japan 60 (1987): 2073.
  • M. Hoffer, “α-Thymidin,” Chemische Berichte 93, no. 12 (1960): 2777–81. doi:10.1002/cber.19600931204.
  • M. S. Motawia, and E. B. Pedersen, “A New Route to 2′,3′-Dideoxycytidine,” Liebigs Annalen der Chemie 1990, no. 6 (1990): 599–602. doi:10.1002/jlac.1990199001110.
  • R. ValCrie, K. Mitsuharu, and L. Jean, “Convenient Preparation of 2-Deoxy-3,5-di-O-p-Toluoyl-α-D-Erythro-Pentofuranosyl Chloride,” Synthetic Communications 27, no. 20 (1997): 3505.
  • B. Maria, K. Tadeusz, M. D. Jolanta, B. Malgorzata, R. Wojciech, and S. David, “2-Thio Derivatives of dUrd and 5′-Fluoro-dUrd and Their 5′-Monophosphates:Synthesis, Interaction with Tumor Thymidylate Synthase, and in Vitro Antitumor Activity,” Journal of Medicinal Chemistry 36 (1993): 3611.
  • M. S. Abdel-Aziz, M. S. Shaheen, A. A. El-Nekeety, and M. A. Abdel-Wahhab, “Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium murale Leaf Extract,” Journal of Saudi Chemical Society 18, no. 4 (2014): 356–63. doi:10.1016/j.jscs.2013.09.011.
  • A. L. Barry, The Antimicrobial Susceptibility Test, Principle and Practices, 4th ed., ELBS, London, 1976, pp 180.
  • T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods 65, no. 1-2 (1983): 55–63. doi:10.1016/0022-1759(83)90303-4.
  • F. Denizot, and R. Lang, “Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability,” Journal of Immunological Methods 89, no. 2 (1986): 271–7. doi:10.1016/0022-1759(86)90368-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.