119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sulfated Tungstate as a Heterogeneous Catalyst for Synthesis of 3-Functionalized Coumarins under Solvent-Free Conditions

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 3588-3600 | Received 16 Mar 2022, Accepted 27 Apr 2022, Published online: 31 May 2022

References

  • R. D. H. Murray, “The Naturally Occurring Coumarins,” Fortschritte Der Chemie Organischer Naturstoffe = Progress in the Chemistry of Organic Natural Products. Progres Dans la Chimie Des Substances Organiques Naturelles 83 (2002): 1–6. doi:10.1007/978-3-7091-6172-2_1.
  • (a) Federica Belluti, Gabriele Fontana, Laura Dal Bo, Nives Carenini, Chiara Giommarelli, and Franco Zunino, “Synthesis and Pharmacological Activity of 2-Oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives,” European Journal of Medicinal Chemistry 18, no. 10 (2010): 3543–50. doi:10.1016/0223-5234(93)90020-F.
  • (a) Zhou, Y.; Zhang, X.; Yang, S.; Li, Y.; Qing, Z.; Zheng, J.; Li, J.; Yang, R., “Ratiometric Visualization of NO/H2S Cross-Talk in Living Cells and Tissues Using a Nitroxyl-Responsive Two-Photon Fluorescence Probe,” Analytical Chemistry, 89, no. 8 (2017): 4587, 4594, doi:10.1021/acs.analchem.7b00073. (b) Yang, S.; Wen, X.; Yang, X.; Li, Y.; Guo, C.; Zhou, Y.; Li, H.; Yang, R., “Visualizing Endogenous Sulfur Dioxide Derivatives in Febrile-Seizure-Induced Hippocampal Damage by a Two-Photon Energy Transfer Cassette,” Analytical Chemistry 90, (2018): 14514, DOI: 10.1021/acs.analchem.8b04355 (c) Guo, J.; Yang, S.; Guo, C.; Zeng, Q.; Qing, Z.; Cao, Z.; Li, J.; Yang, R., “Molecular Engineering of α-Substituted Acrylate Ester Template for Efficient Fluorescence Probe of Hydrogen Polysulfides,” Analytical Chemistry 90, (2001): 881, DOI: 10.1021/acs.analchem.7b03755. (d) Chen, Q.; Yang, J.; Li, Y.; Zheng, J.; Yang, R., “Sensitive and Rapid Detection Of Endogenous Hydrogen Sulfide Distributing In Different Mouse VIscera via a Two-Photon Fluorescent Probe,” Analytica Chimica Acta 896, (2015): 128, DOI: 10.1016/j.aca.2015.05.040. (e) Razavi, S. M., Int. J. Biol. Chem 5, (2011): 86 (g) Wang, Y.-H.; Avula, B.; Nanayakkara, N. P. D.; Zhao, J.; Khan, I. A. J., “Cassia Cinnamon as a Source of Coumarin in Cinnamon-Flavored Food and Food Supplements in the United States,” Agricultural and Food Chemistry 61, (2013): 4470, DOI: 10.1021/jf4005862 (f) Floc’h, F.; Mauger, F.; Desmurs, J.-R.; Gard, A., “Coumarin in Plants and Fruits: Implications in Perfumery,” Perfum Flavor 27, (2002): 32.
  • (a) Raju, B. C.; Tiwari, A. K.; Kumar, J. A.; Ali, A. Z.; Agawane, S. B.; Saidachary, G.; Madhusudana, K., “α-Glucosidase Inhibitory Antihyperglycemic Activity of Substituted Chromenone Derivatives,” Bioorganic & Medicinal Chemistry, 118, (2010): 358, 365, doi:10.1016/j.bmc.2009.10.047. (b) Vazquez-Rodriguez, S.; Lopez, R. L.; Matos, M. J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Crego, A. M.; Santos, Y., “Design, Synthesis and Antibacterial Study of New Potent and Selective Coumarin–Chalcone Derivatives for the Treatment of Tenacibaculosis,” Bioorganic and Medicinal Chemistry 23, (2015): 7045, DOI: 10.1016/j.bmc.2015.09.028. (c) Vazquez-Rodriguez, S.; Figueroa-Guınez, R.; Joao Matos, M.; Santana, L.; Uriarte, E.; Lapier, M.; Maya, J. D.; Olea-Azar, C., “Synthesis of Coumarin–Chalcone Hybrids and Evaluation of Their Antioxidant and Trypanocidal Properties,” MedChemComm 4, (2013): 993, DOI: 10.1039/C3MD00025G. (d) Fernanda, P.-C.; Saleta, V.-R.; Joao, M. M.; Alejandra, H.-M.; Frederick, V.; Amlan, A. D.; Bhavani, G.; Claudio, O.-A.; Lourdes, S.; Eugenio, U., “Synthesis and Electrochemical and Biological Studies of Novel Coumarin–Chalcone Hybrid Compounds,” Journal of Medicinal Chemistry 56, (2013): 6136, DOI: 10.1021/jm400546y. (e) Niu, H. D.; Wang, W. B.; Li, J. Y.; Lei, Y.; Zhao, Y.; Yang, W. X.; Zhao, C. Y.; Lin, B.; Song, S. J.; Wang, S. J., “A Novel Structural Class of Coumarin-Chalcone Fibrates as PPARα/γ Agonists with Potent Antioxidant Activities: Design, Synthesis, Biological Evaluation and Molecular Docking Studies,” European Journal of Medicinal Chemistry 138, (2017): 212, DOI: 10.1016/j.ejmech.2017.06.033. (f) Secci, D.; Carradori, S.; Bolasco, A.; Chimenti, P.; Yanez, M.; Ortuso, F.; Alcaro, S., “Synthesis and Selective Human Monoamine Oxidase Inhibition of 3-Carbonyl, 3-Acyl, and 3-Carboxyhydrazido Coumarin Derivatives,” European Journal of Medicinal Chemistry 46, (2011): 4846, (g) Chen, C.-T.; Huang, W.-P., Journal of American Chemical Society 124, (2002): 6246, DOI: 10.1016/j.ejmech.2011.07.017.
  • (a) Jang, Y. J.; Syu, S. E.; Chen, Y. J.; Yang, M. C.; Lin, W. W., “Syntheses of Furo[3,4-C]Coumarins and Related Furyl Coumarin Derivatives Via Intramolecular Wittig Reactions,” Organic & biomolecular chemistry, 410, (2012): 843, 847, DOI: 10.1039/C1OB06571H; (b) Jian, T. Y.; Chen, X. Y.; Sun, L. H.; Ye, S., “N-heterocyclic carbene-catalyzed [4 + 2] cycloaddition of ketenes and 3-aroylcoumarins: highly enantioselective synthesis of dihydrocoumarin-fused dihydropyranones,” Organic and Biomolecular Chemistry 11, (2013): 158, DOI: 10.1039/C2OB26804C; (c) Wang, Y.; Yu, Z. H.; Zheng, H. F.; Shi, D. Q., “DABCO and Bu3P Catalyzed [4 + 2] and [3 + 2] Cycloadditions Of 3-Acyl-2h-Chromen-Ones and Ethyl 2,3-Butadienoate.” Organic and Biomolecular Chemistry 10, (2012): 7739, DOI: 10.1039/C2OB26300A; (d) Yuan, W.; Zheng, H. F.; Yu, Z. H.; Tang, Z. L.; Shi, D. Q., “Tunable Phosphine-Triggered Cascade Reactions of MBH Derivatives and 3-Acyl-2h-Chromen-2-Ones: Highly Selective Synthesis of Diverse Chromenones,” European Journal of Organic Chemistry 3, (2014): 583, doi:10.1002/ejoc.201301358. (e) El-Saghier, A. M. M.; Naili, M. B.; Rammash, B. K.; Saleh, N. A.; Kreddan, K. M., “Synthesis and antibacterial activity of some new fused chromenes,” Arkivoc xvi, (2007): 83, DOI: 10.3998/ark.5550190.0008.g09.
  • (a)Talita de A. Fernandes, Boniek Gontijo Vaz, Marcos N. Eberlin, Alcides J. M. da Silva, and Paulo R. R. Costa, “Synthetic Application of Lithiation Reactions; Part XIII. Synthesis of 3-Phenylcoumarins and Their Benzo Derivatives,” Synthesis 75, no. 21 (2010): 7085–91. doi:10.1055/s-1979-28871.
  • (a)H. Surya Prakash Rao, and S. Sivakumar, “Recent Advances in the Synthesis of Coumarin Derivatives via Pechmann Condensation,” The Journal of Organic Chemistry 71, no. 23 (2006): 8715–23. doi:10.1021/jo061372e.
  • (a) Sheldon, R. A.; Arends, I. W. C. E.; Hanefeld, U., Green Chemistry and Catalysis, WILEY VCH (2012):183, 207. (b) Clark, J. H.; Luque, R.; Matharu, A. S., “Green Chemistry, Biofuels, and Biorefinery,” Annual Review of Chemical and Biomolecular Engineering 3, (2012): 183. (c) Cernansky, R., “Chemistry: Green refill,” Nature 519, (2015): 379,doi:10.1038/nj7543-379a.(d) Sanderson, K.; “It's Not Easy Being Green: In the Past Two Decades, the Green-Chemistry Movement has Helped Industry Become Much Cleaner. But Mindsets Change Slowly, and the Revolution Still Has a Long Way to Go.” Nature 469, (2011) 18. [Mismatch] (e) Poliakoff, M.; Licence, P., “Green Chemistry,” Nature 450, (2007): 810.
  • (a)Vivek Polshettiwar, and Rajender S. Varma, “Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis,” Accounts of Chemical Research 41, no. 5 (2008): 629–39. doi:10.1021/cr0200769.
  • (a)Nuno R. Candeias, Luís C. Branco, Pedro M. P. Gois, Carlos A. M. Afonso, and Alexandre F. Trindade, “Neat Reaction Technology: A Green Tool,” Chemical Reviews 109, no. 6 (2009): 2703–802. doi:10.1021/cr800462w.
  • (a) Zolfigol, M. A.; Khazaei, A.; Moosavi-Zare, A. R.; Zare, A.; Khakyzadeh, V., “Rapid Synthesis of 1-Amidoalkyl-2-Naphthols over Sulfonic Acid Functionalized Imidazolium Salts,” Applied Catalysis A: General 400, (2011): 70, doi:10.1016/j.apcata.2011.04.013. (b) M.A. Zolfigol, M. A.; Khazaei, A.; Moosavi-Zare, A. R.; Zare, A., “3-Methyl-1-Sulfonic Acid Imidazolium Chloride as a New, Efficient and Recyclable Catalyst and Solvent for the Preparation of N-Sulfonyl Imines at Room Temperature,” Journal of the Iranian Chemical Society 7, (2010): 646, DOI: 10.1007/BF03246053. (c) Zolfigol, M. A.; Khazaei, A.; Moosavi-Zare, A. R.; Zare, A., “Ionic Liquid 3-Methyl-1-sulfonic Acid Imidazolium Chloride as a Novel and Highly Efficient Catalyst for the Very Rapid Synthesis of bis(Indolyl)methanes under Solvent-free Conditions,” Organic Preparations and Procedures International 42, (2010): 95, DOI: 10.1080/00304940903585495. (d) Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Zare, A., “An efficient Method for the Nitration Of Phenols with NaNo2 in the Presence of 3-Methyl-1-Sulfonic Acid Imidazolium Chloride,” SCIENTIA IRANICA 17, (2010): 31. (e) Zare, A.; Zare, A. R.; Merajoddin, M.; Zolfigol, A.; Hekmat-Zadeh, T.; Hasaninejad, A.; Khazaei, A.; Mokhlesi, M.; Khakyzadeh, V.; Derakhshan-Panah, F.; Beyzavi, M. H.; Rostami, E.; Arghoon, A.; Roohandeh, R., “Ionic Liquid Triethylamine-Bonded Sulfonic Acid {[Et3N–SO3H]Cl} as a Novel, Highly Efficient And Homogeneous Catalyst for the Synthesis of β-Acetamido Ketones, 1,8-Dioxo-Octahydroxanthenes and 14-Aryl-14H-Dibenzo[a,j]xanthenes,” Journal of Molecular Liquids 167, (2012): 69, DOI: 10.1016/j.molliq.2011.12.012.(f) Zare, A. R.; Zolfigol, M. A.; Zarei, M.; Zare, A.; Khakyzadeh, V., “Preparation, Characterization and Application of Ionic Liquid Sulfonic Acid Functionalized Pyridinium Chloride as an Efficient Catalyst for the Solvent-Free Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]-xanthen-11-ones,” Journal of Molecular Liquids 211, (2015): 373, DOI: 10.1016/j.molliq.2013.05.009.
  • (a) Chaudhari, P. S.; Salim, S. D.; Sawant, R. V.; Akamanchi, K. G., “Sulfated tungstate: a new solid heterogeneous catalyst for amide synthesis,” Green Chemistry 12, (2010): 1707, doi:10.1039/C0GC00053A. (b) Katkar, K. V.; Chaudhari, P. S.; Akamanchi, K. G., “Sulfated Tungstate: An Efficient Catalyst for the Ritter Reaction,” Green Chemistry 13, (2011): 835, DOI: 10.1039/C0GC00759E. (c) Salim, S. D.; Akamanchi, K. G., “Sulfated Tungstate: An Alternative, Eco-friendly Catalyst for Biginelli Reaction,” Catalysis Communications 12, (2011): 1153, DOI: 10.1016/j.catcom.2011.02.018. (d) Pathare, P. S.; Chaudhari, P. S.; Akamanchi, K. G., “Sulfated Tungstate: An Efficient Catalyst for Synthesis of Thioamides via Kindler Reaction,” A Applied Catalysis A: General 125, (2012): 425, DOI: 10.1016/j.apcata.2012.03.012. (e) Pathare, S. P.; Akamanchi, K. G., “Sulfated Tungstate: A Green Catalyst for Strecker Reaction,” Tetrahedron Letter 53, (2012): 871, DOI: 10.1016/j.tetlet.2011.12.027. (f) Salim, S. D.; Pathare, S. P.; Akamanchi, K. G., “Sulfated Tungstate: A Green Catalyst for Synthesis of Thiomorpholides via Willgerodt–Kindler reaction,” Catalysis Communications 13, (2011): 78, DOI: 10.1016/j.catcom.2011.06.022. (g) Pathare, S. P.; Sawant, R. V.; Akamanchi, K. G., “Sulfated Tungstate Catalyzed Highly Accelerated N-Formylation,” Tetrahedron Letter 53, (2012): 3259, DOI: 10.1016/j.tetlet.2012.04.058. (h) Pathare, S. P.; Jain, A. K. H.; Akamanchi, K. G., “Sulfated Tungstate: A Highly Efficient Catalyst for Transamidation of Carboxamides with Amines,” RSC Advances 3, (2013): 7697, DOI: 10.1039/C3RA00127J. (i) Pathare, S. P.; Akamanchi, K. G.; “Sulfated Tungstate Catalyzed Selective N-monoalkylation of Primary Amines with Alcohol,” Applied Catalysis A: General 452, (2013): 29, DOI: 10.1016/j.apcata.2012.11.017. (j) Katkar, K. V.; Veer, S. D.; Akamanchi, K. G.; “Sulfated Tungstate as Hydroxyl Group Activator for Preparation of Benzyl, Including P-Methoxybenzyl Ethers of Alcohols and Phenols,” Synthetic Communications 46, (2016): 1893, DOI: 10.1080/00397911.2016.1230218. (k) Veer, S. D.; Katkar, K. V.; Akamanchi, K. G., “Sulfated Tungstate Catalyzed Activation of Nitriles: Addition of Amines to Nitriles for Synthesis of Amidines,” Tetrahedron Letter 57, (2016): 4039, DOI: 10.1016/j.tetlet.2016.07.073. (l) Wagh, G. D.; Akamanchi, K. G., “Sulfated Tungstate Catalyzed Synthesis of C3-Symmetric 1,3,5-triaryl Benzenes under Solvent-Free Condition,” Tetrahedron Letter 58, (2017): 3032, DOI: 10.1016/j.tetlet.2017.06.055. (m) Autade, S. B.; Akamanchi, K. G., “Sulfated Tungstate a Heterogeneous Acid Catalyst for Synthesis of 4-aryl-NH-1,2,3-Triazoles by 1,3-dipolar Cycloaddition of Nitroolefins with NaN3,” Synthetic Communications 49, (2019): 1947, DOI: 10.1080/00397911.2019.1612919. (n) Pise, A. S.; Ingale, A. P.; Dalvi, N. R.; “Ultrasound-assisted efficient and green synthesis of 2-substituted benzothiazoles under solvent-free condition using recyclable sulfated tungstate,” Synthetic Communications 51, (2021): 3629, DOI: 10.1080/00397911.2021.1986842. (o) Ingale, A. P.; Shinde, S. V.; Thorat, N. M.; “Sulfated Tungstate: A Highly Efficient, Recyclable and Ecofriendly Catalyst for Chemoselective N-tert Butyloxycarbonylation of Amines under the Solvent-Free Conditions,” Synthetic Communications 51, (2021): 2528, DOI: 10.1080/00397911.2021.1942060.
  • T. N. Lieu, K. D. Nguyen, D. T. Le, T. Truong, and N. T. S. Phan, “Application of Iron-Based Metal–Organic Frameworks in Catalysis: oxidant-Promoted Formation of Coumarins Using Fe3O(BPDC)3 as an Efficient Heterogeneous Catalyst,” Catalysis Science & Technology 6, no. 15 (2016): 5916–26. doi:10.1039/C5CY02191J.
  • D. Khan, S. Mukhtar, M. A. Alsharif, M. I. Alahmdi, and N. Ahmed, “PhI(OAc)2 Mediated an Efficient Knoevenagel Reaction and Their Synthetic Application for Coumarin Derivatives,” Tetrahedron Letters 58, no. 32 (2017): 3183–7. doi:10.1016/j.tetlet.2017.07.018.
  • F. Jafarpour, and M. Abbasnia, “A Regioselective Metal-Free Construction of 3-Aroyl Coumarins by Csp2-H Functionalization,” The Journal of Organic Chemistry 81, no. 23 (2016): 11982–6. doi:10.1021/acs.joc.6b02051.
  • A. Mehdi, R. D. Saideh, P. Rahim, T. Mahnaz, and M. Peiman, “Regioselective Transition Metal-Free Acylation of Coumarins via Cross-Dehydrogenative Coupling Reaction of Coumarins and Aldehydes,” Tetrahedron Letter 57 (2016): 3701. doi:10.1016/j.tetlet.2016.06.061.
  • W. Yiyi, Y. Ting, C. Hantao, C. Zhuo, Z. Meijie, and Z. Xuecheng, “Efficient Synthesis of 3-Aroyl Coumarins in Water via Catalytic Carbopalladation of Nitriles,” ChemistrySelect 4, no. 48 (2019): 14233–6. doi:10.1002/slct.201904315.
  • R. Pashazadeh, S. Rajai-Daryasarei, S. Mirzaei, M. Soheilizad, S. Ansari, and M. Shabanian, “A Regioselective Approach to C3-Aroylcoumarins via Cobalt-Catalyzed C(sp2)–H Activation Carbonylation of Coumarins,” Synthesis 51, no. 15 (2019): 3014–20. doi:10.1055/s-0037-1610702.
  • Y. Jin-Wei, Y. Qiu-Yue, Y. Liang-Ru, M. Wen-Peng, M. Pu, X. Yong-Mei, and Q. Ling-Bo, “Iron-Catalyzed Regioselective Direct Coupling of Aromatic Aldehydes with Coumarins Leading to 3-Aroyl Coumarins,” RSC Advances 5 (2015): 88258. doi:10.1039/C5RA16573C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.