167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Antimicrobial Screening of 3-Fluoromethyl Pyrazole Derivatives

, , , , &
Pages 3640-3650 | Received 20 Jul 2021, Accepted 02 May 2022, Published online: 18 May 2022

References

  • H. Getahun, I. Smith, K. Trivedi, S. Paulin, and H. H. Balkhy, “Tackling Antimicrobial Resistance in the COVID-19 Pandemic,” Bulletin of the World Health Organization 98, no. 7 (2020): 442–442A. doi:10.2471/BLT.20.268573.
  • “Antimicrobial resistance” accessed February 1, 2019, https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance.
  • G. Beruve, “An Overview of Molecular Hybrids in Drug Discovery,” Expert Opinion on Drug Discovery 11 (2016): 281–305.
  • N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications,” Molecules 25, no. 8 (2020): 1909–51. doi:10.3390/molecules25081909.
  • J. Nalawade, A. Shinde, A. Chavan, S. Patil, M. Suryavanshi, M. Modak, P. Choudhari, V. D. Bobade, and P. C. Mhaske, “Synthesis of New Thiazolyl-Pyrazolyl-1,2,3-Triazole Derivatives as Potential Antimicrobial Agents,” European Journal of Medicinal Chemistry 179 (2019): 649–59. doi:10.1016/j.ejmech.2019.06.074.
  • V. Kumar, K. Kaur, G. K. Gupta, and A. K. Sharma, “Pyrazole Containing Natural Products: synthetic Preview and Biological Significance,” European Journal of Medicinal Chemistry 69 (2013): 735–53. doi:10.1016/j.ejmech.2013.08.053.
  • Ş. Güniz Küçükgüzel, and S. Şenkardeş, “Recent Advances in Bioactive Pyrazoles,” European Journal of Medicinal Chemistry 97 (2015): 786–815. doi:10.1016/j.ejmech.2014.11.059.
  • M. F. Khan, M. M. Alam, G. Verma, W. Akhtar, M. Akhter, and M. Shaquiquzzaman, “The Therapeutic Voyage of Pyrazole and Its Analogs: A Review,” European Journal of Medicinal Chemistry 120 (2016): 170–201. doi:10.1016/j.ejmech.2016.04.077.
  • K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y. N. Mabkhot, F. A. Al-Aizari, and M. Ansar, “Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review,” Molecules 23, no. 1 (2018): 134–220. doi:10.3390/molecules23010134.
  • R. S. Keri, K. Chand, T. Ramakrishnappa, and B. M. Nagaraja, “Recent Progress on Pyrazole Scaffold-Based Antimycobacterial Agents,” Arch Pharm Chem Life Science 348 (2015): 399–14.
  • R. Ramesh, R. D. Shingare, V. Kumar, A. Anand, B. Swetha, S. Veeraraghavan, S. Viswanadha, R. Ummanni, R. Gokhale, and D. S. Reddy, “Repurposing of a Drug Scaffold: Identification of Novel Sila Analogues of Rimonabant as Potent Antitubercular Agents,” European Journal of Medicinal Chemistry 122 (2016): 723–30. doi:10.1016/j.ejmech.2016.07.009.
  • P. T. Chovatia, J. D. Akabari, P. K. Kachhadia, P. D. Zalavadia, and H. S. Joshi, “Synthesis and Selective Antitubercular and Antimicrobial Inhibitory Activity of 1-Acetyl-3,5-Diphenyl-4,5-Dihydro-(1H)-Pyrazole Derivatives,” Journal of the Serbian Chemical Society 71 (2007): 713–20. doi:10.2298/JSC0607713C.
  • A. M. Vijesh, A. M. Isloor, P. Shetty, S. Sundershan, and H. Kun, “New Pyrazole Derivatives Containing 1,2,4-Triazoles and Benzoxazoles as Potent Antimicrobial and Analgesic Agents,” European Journal of Medicinal Chemistry 62 (2013): 410–5. doi:10.1016/j.ejmech.2012.12.057.
  • N. B. Reddy, G. V. Zyryanov, G. M. Reddy, A. Balakrishna, A. Padmaja, V. Padmavathi, C. S. Reddy, J. R. Garcia, and G. Sravya, “Design and Synthesis of Some New Benzimidazole Containing Pyrazoles and Pyrazolyl Thiazoles as Potential Antimicrobial Agents,” Journal of Heterocyclic Chemistry 56, no. 2 (2019): 589–96. doi:10.1002/jhet.3435.
  • J. Kovvuri, B. Nagaraju, C. G. Kumar, K. Sirisha, C. Chandrasekhar, A. Alarifi, and A. Kamal, “Catalyst-Free Synthesis of Pyrazole-Aniline Linked Coumarin Derivatives and Their Antimicrobial Evaluation,” Journal of Saudi Chemical Society 22, no. 6 (2018): 665–77. doi:10.1016/j.jscs.2017.12.002.
  • R. Pundeer, Sushma, V. Kiran, C. Sharma, K. R. Aneja, and O. Prakash, “Synthesis and Evaluation of Antibacterial and Antifungal Activities of New (Z)-3- Bromo-4-(1,3-Diaryl-1H-Pyrazol-4-yl)but-3-en-2-Ones and 4-(3-Methyl-1- Phenyl-1H-Pyrazol-5-yl)-1,3-Diaryl-1H Pyrazoles,” Medicinal Chemistry Research 22 (2013): 4715–26. doi:10.1007/s00044-013-0480-0.
  • Y. Xu, X. Liu, M. Saunders, S. Pearce, J. M. Foulks, K. M. Parnell, A. Clifford, R. N. Nix, J. Bullough, T. F. Hendrickson, et al, “Discovery of 3-(Trifluoromethyl)-1H-Pyrazole-5-Carboxamide Activators of the M2 Isoform of Pyruvate Kinase (PKM2),” Bioorganic & Medicinal Chemistry Letters 24, no. 2 (2014): 515–9. doi:10.1016/j.bmcl.2013.12.028.
  • H. Kumar, D. Saini, S. Jain, and N. Jain, “Pyrazole Scaffold: A Remarkable Tool in the Development of Anticancer Agents,” European Journal of Medicinal Chemistry 70 (2013): 248–58. doi:10.1016/j.ejmech.2013.10.004.
  • Ş. Cankara Pirol, B. Çalışkan, I. Durmaz, R. Atalay, and E. Banoglu, “Synthesis and Preliminary Mechanistic Evaluation of 5-(p-Tolyl)-1-(Quinolin-2-yl)Pyrazole-3-Carboxylic Acid Amides with Potent Antiproliferative Activity on Human Cancer Cell Lines,” European Journal of Medicinal Chemistry 87 (2014): 140–9. doi:10.1016/j.ejmech.2014.09.056.
  • A. A. Bekhit, H. M. A. Ashour, Y. S. Abdel, A. E. A. Bekhit, and A. Baraka, “Synthesis and Biological Evaluation of Some Thiazolyl and Thiadiazolyl Derivatives of 1H-Pyrazole as Anti-inflammatory Antimicrobial Agents,” European Journal of Medicinal Chemistry 43, no. 3 (2008): 456–63. doi:10.1016/j.ejmech.2007.03.030.
  • A. A. Bekhit, A. M. M. Hassan, H. A. Abd El Razik, M. M. M. El-Miligy, E. J. El Agroudy, A. E. A. Bekhit, E. J. El-Agroudy, and A. E. A. Bekhit, “New Heterocyclic Hybrids of Pyrazole and Its Bioisosteres: Design, Synthesis and Biological Evaluation as Dual Acting Antimalarial-Antileishmanial Agents,” European Journal of Medicinal Chemistry 94 (2015): 30–44. doi:10.1016/j.ejmech.2015.02.038.
  • M. Alvarado, P. Goya, M. Macías-González, F. J. Pavón, A. Serrano, N. Jagerovic, J. Elguero, A. Gutiérrez-Rodríguez, S. García-Granda, M. Suardíaz, et al, “Antiobesity Designed Multiple Ligands: Synthesis of Pyrazole Fatty Acid Amides and Evaluation as Hypophagic Agents,” Bioorganic & Medicinal Chemistry 16, no. 23 (2008): 10098–105. doi:10.1016/j.bmc.2008.10.023.
  • S. J. Takate, A. D. Shinde, B. K. Karale, H. Akolkar, L. Nawale, D. Sarkar, and P. C. Mhaske, “Thiazolyl-Pyrazole Derivatives as Potential Antimycobacterial Agents,” Bioorganic & Medicinal Chemistry Letters 29, no. 10 (2019): 1199–202. doi:10.1016/j.bmcl.2019.03.020.
  • N. A. Meanwell, “Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design,” Journal of Medicinal Chemistry 54, no. 8 (2011): 2529–91. doi:10.1021/jm1013693.
  • Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Ace ∼ na, V. A. Soloshonok, K. Izawa, and H. Liu, “Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas,” Chemical Reviews 116, no. 2 (2016): 422–518. doi:10.1021/acs.chemrev.5b00392.
  • J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, and H. Liu, “Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011),” Chemical Reviews 114, no. 4 (2014): 2432–506. doi:10.1021/cr4002879.
  • T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, et al, “Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3- (Trifluoromethyl)-1H-Pyrazol-1-yl]Benzenesulfonamide (SC-58635, Celecoxib),” Journal of Medicinal Chemistry 40 (1997): 1347–65. doi:10.1021/jm960803q.
  • M. L. Quan, P. Y. S. Lam, Q. Han, D. J. P. Pinto, M. Y. He, R. Li, C. D. Ellis, C. G. Clark, C. A. Teleha, J. H. Sun, et al, “Discovery of 1-(3'-aminobenzisoxazol-5'-yl)-3-trifluoromethyl-N-[2-fluoro-4- [(2'-dimethylaminomethyl)imidazol-1-yl]phenyl]-1H-pyrazole-5-carboxyamide hydrochloride (razaxaban), a Highly Potent, Selective, and Orally Bioavailable Factor Xa Inhibitor,” Journal of Medicinal Chemistry 48, no. 6 (2005): 1729–44. doi:10.1021/jm0497949.
  • D. J. P. Pinto, M. J. Orwat, S. Wang, J. M. Fevig, M. L. Quan, E. Amparo, J. Cacciola, K. A. Rossi, R. Alexander, A. M. Smallwood, et al, “Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a Highly Potent, Selective, and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa ,” Journal of Medicinal Chemistry 44, no. 4 (2001): 566–78. doi:10.1021/jm000409z.
  • T. Zhang, C. Zheng, J. Wu, L. Sun, and H. Piao, “Synthesis of Novel Dihydrotriazine Derivatives Bearing 1,3-Diaryl Pyrazole Moieties as Potential Antibacterial Agents,” Bioorganic & Medicinal Chemistry Letters 29, no. 9 (2019): 1079–84. doi:10.1016/j.bmcl.2019.02.033.
  • Z. Wu, D. Hu, J. Kuang, H. Cai, S. Wu, and W. Xue, “Synthesis and Antifungal Activity of n-(Substituted Pyridinyl)-1-Methyl(Phenyl)-3-(Trifluoromethyl)-1h-Pyrazole-4-Carboxamide Derivatives,” Molecules (Basel, Switzerland) 17, no. 12 (2012): 14205–18. doi:10.3390/molecules171214205.
  • A. Sun, J. Yoon, Y. Yin, A. Prussia, Y. Yang, J. Min, R. K. Plemper, and J. P. Snyder, “Potent Non-Nucleoside Inhibitors of the Measles Virus Rna-Dependent Rna Polymerase Complex,” Journal of Medicinal Chemistry 51, no. 13 (2008): 3731–41. doi:10.1021/jm701239a.
  • M. C. Franchini, G. Bertuzzi, M. Fochi, E. Locatelli, I. Monaco, E. Strocchi, P. Zani, B. F. Bonini, P. Calandro, M. Chiariello, et al, “Quinone-Fused Pyrazoles through 1,3-Dipolar Cycloadditions: synthesis of Tricyclic Scaffolds and in Vitro Cytotoxic Activity Evaluation on Glioblastoma Cancer Cells,” Chemmedchem. 13, no. 17 (2018): 1744–50. doi:10.1002/cmdc.201800251.
  • B. Wang, H. Wang, H. Liu, L. Xiong, N. Yang, Y. Zhang, and Z. Li, “Synthesis and Structure-Insecticidal Activity Relationship of Novel Phenylpyrazole Carboxylic Acid Derivatives Containing Fluorine Moiety,” Chinese Chemical Letters 31, no. 3 (2020): 739–45. doi:10.1016/j.cclet.2019.07.064.
  • NCCLS (National Committee for Clinical Laboratory Standards) method for dilution antimicrobial susceptibility tests of bacteria that grow aerobically, Approv. Stand. M100-S12, Wayne PA, USA, (2002) M100-S12.
  • A. B. Mali, M. Joshi, and V. Kulkarni, “Phytochemical Screening and Antimicrobial Activity of Stevia Rebaudiana Leaves,” International Journal of Current Microbiology and Applied Sciense 4 (2015): 678–85.
  • S. M. Jagadale, A. P. Chavan, A. Shinde, V. Sisode, V. D. Bobade, and P. C. Mhaske, “Synthesis and Antimicrobial Evaluation of New Thiazolyl-1,2,3-Triazolyl-Alcohol Derivatives,” Medicinal Chemistry Research 29, no. 6 (2020): 989–99. doi:10.1007/s00044-020-02540-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.