129
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Ionic Liquid [(EMIM)Ac] Catalyzed Green and Efficient Synthesis of Pyrano[2,3-c]Pyrazole Derivatives

, , & ORCID Icon
Pages 3761-3775 | Received 10 Mar 2022, Accepted 06 May 2022, Published online: 26 May 2022

Reference

  • Bekington Myrboh, Hormi Mecadon, Md Rumum Rohman, Mantu Rajbangshi, Icydora Kharkongor, Badaker M. Laloo, Iadeishisha Kharbangar, and Baskhemlang Kshiar, “Synthetic Developments in Functionalized Pyrano [2, 3-c] Pyrazoles. A Review,” Organic Preparations and Procedures International 45, no. 4 (2013): 253–303. doi:10.1080/00304948.2013.798566.
  • Ahmed Fadda, Ahmed El-Mekabaty, and Khaled M. Elattar, “Chemistry of Enaminonitriles of Pyrano [2, 3-c] Pyrazole and Related Compounds,” Synthetic Communications 43, no. 20 (2013): 2685–719. doi:10.1080/00397911.2012.744842.
  • Manouchehr Mamaghani, and Roghayeh Hossein Nia, “A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles,” Polycyclic Aromatic Compounds 41, no. 2 (2021): 223–91. doi:10.1080/10406638.2019.1584576.
  • R. Stolle, “Ueber Die Condensation Von Acetessigester Mit Phenyl‐Methyl‐Pyrazolon Und Die Einwirkungsproducte Von Phenylhydrazin Und Hydrazin Auf Dehydracetsäure,” Berichte der deutschen chemischen Gesellschaft 38, no. 3 (1905): 3023–32.
  • Hans Junek, and Hans Aigner, “Synthesen Mit Nitrilen, XXXV. Reaktionen Von Tetracyanäthylen Mit Heterocyclen,” Chemische Berichte 106, no. 3 (1973): 914–21. doi:10.1002/cber.19731060323.
  • H. H. Otto, “Synthesis of Some 4H-pyrano (2.3-c) Pyrazoles,” Archiv der Pharmazie 307, no. 6 (1974): 444–7. doi:10.1002/ardp.19743070609.
  • Nadia Mohamed, Nahed Khaireldin, A. Fahmyb, and A. El-Sayeda, “Facile Synthesis of Fused Nitrogen Containing Heterocycles as Anticancer Agents,” Der Pharma Chemica 2, no. 1 (2010): 400–17.
  • Hadi Adibi, Leila Hosseinzadeh, Sepideh Farhadi, and Farahnaz Ahmadi, “Synthesis and Cytotoxic Evaluation of 6-Amino-4-Aryl-3-Methyl-2, 4-Dihydropyrano [2, 3-C] Pyrazole-Carbonitrile Derivatives Using Borax with Potential Anticancer Effects,” Journal of Reports in Pharmaceutical Sciences 2, no. 2 (2013): 27–35.
  • Rahul Ramtekkar, Kandhasamy Kumarvel, Gnanasambandam Vasuki, K. Sekar, and R. Krishna, “Computer-Aided Drug Design of Pyranopyrazoles and Related Compounds for Checkpoint Kinase-1,” Letters in Drug Design & Discovery 6, no. 8 (2009): 579–84. doi:10.2174/157018009789353455.
  • Nicolas Foloppe, Lisa M. Fisher, Rob Howes, Andrew Potter, Alan G. S. Robertson, and Allan E. Surgenor, “Identification of Chemically Diverse Chk1 Inhibitors by Receptor-Based Virtual Screening,” Bioorganic & Medicinal Chemistry 14, no. 14 (2006): 4792–802. doi:10.1016/j.bmc.2006.03.021.
  • Magda M. F. Ismail, Nagy M. Khalifa, Hoda H. Fahmy, Eman S. Nossier, and Mohamed M. Abdulla, “Design, Docking, and Synthesis of Some New Pyrazoline and Pyranopyrazole Derivatives as anti‐Inflammatory Agents,” Journal of Heterocyclic Chemistry 51, no. 2 (2014): 450–8. doi:10.1002/jhet.1757.
  • Adel Hamed Mandour, Eslam Reda El-Sawy, Manal Shaaban Ebaid, and Seham M. Hassan, “sinteza i potencijalno biološko djelovanje novih 3-((N-supstituiranih indol-3-il) metilenamino)-6-amino-4-aril-pirano (2, 3-c) pirazol-5-karbonitrila i 3, 6-diamino-4-(N-supstituiranih indol-3-il) pirano (2, 3-c) pirazol-5-karbonitrila,” Acta Pharmaceutica (Zagreb, Croatia) 62, no. 1 (2012): 15–30. doi:10.2478/v10007-012-0007-0.
  • Taisei Ueda, Hideshi Mase, Noriichi Oda, and Isoo Ito, “Synthesis of Pyrazolone Derivatives. XXXIX. Synthesis and Analgesic Activity of Pyrano[2,3-c]Pyrazoles,” Chemical & Pharmaceutical Bulletin 29, no. 12 (1981): 3522–8. doi:10.1248/cpb.29.3522.
  • Anand Saundane, Prabhaker Walmik, Manjunatha Yarlakatti, Vijaykumar Katkar, and Vaijinath A. Verma, “Synthesis and Biological Activities of Some New Annulated Pyrazolopyranopyrimidines and Their Derivatives Containing Indole Nucleus,” Journal of Heterocyclic Chemistry 51, no. 2 (2014): 303–14. doi:10.1002/jhet.1582.
  • D. Capodanno, J. L. Ferreiro, and D. J. Angiolillo, “Antiplatelet Therapy: new Pharmacological Agents and Changing Paradigms,” Journal of Thrombosis and Haemostasis 11 (2013): 316–29. doi:10.1111/jth.12219.
  • G. Tacconi, G. Gatti, G. Desimoni, and V. Messori, “A New Route to 4H‐Pyrano [2, 3‐c] Pyrazoles,” Journal für Praktische Chemie 322, no. 5 (1980): 831–4. doi:10.1002/prac.19803220519.
  • Sheu-Meei Yu, Sheng-Chu Kuo, Li-Jiau Huang, Selma Siu-Man Sun, Tur-Fu Huang, and Che-Ming Teng, “ Vasorelaxation of Rat Thoracic Aorta Caused by Two Ca(2+)-Channel Blockers, HA-22 and HA-23,” The Journal of Pharmacy and Pharmacology 44, no. 8 (1992): 667–71. doi:10.1111/j.2042-7158.1992.tb05491.x.
  • Fathy M. Abdelrazek, Peter. Metz, Nadia H. Metwally, and Sherif F. El‐Mahrouky, “Synthesis and Molluscicidal Activity of New Cinnoline and Pyrano [2, 3‐c] Pyrazole Derivatives,” Archiv der Pharmazie 339, no. 8 (2006): 456–60. doi:10.1002/ardp.200600057.
  • Debasis Das, Reena Banerjee, and Atanu Mitra, “Bioactive and Pharmacologically Important Pyrano [2, 3-c] Pyrazoles,” Journal of Chemical and Pharmaceutical Research 6, no. 11 (2014): 108–16.
  • Dileep Kumar Yadav, and M. A. Quraishi, “Electrochemical Investigation of Substituted Pyranopyrazoles Adsorption on Mild Steel in Acid Solution,” Industrial & Engineering Chemistry Research 51, no. 24 (2012): 8194–210. doi:10.1021/ie3002155.
  • Răzvan C. Cioc, Eelco Ruijter, and Romano V. A. Orru, “Multicomponent Reactions: advanced Tools for Sustainable Organic Synthesis,” Green Chemistry 16, no. 6 (2014): 2958–75. doi:10.1039/C4GC00013G.
  • Ashishkumar Katariya, Devidas Bhagat, Maya Katariya, and Rajendra Pawar, “Green Techniques in Organic Synthesis and Its Advantages,” Journal of Medicinal Chemistry and Drug Design 3, no. 3 (2017): 62–6.
  • Benjamin H. Rotstein, Serge Zaretsky, Vishal Rai, and Andrei K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114, no. 16 (2014): 8323–59. doi:10.1021/cr400615v.
  • V. K. Ahluwalia, and Mazaahir Kidwai, New Trends in Green Chemistry (Boston: Springer Science & Business Media, 2004).
  • Mohammad Ali Zolfigol, Mahsa Tavasoli, Ahmad Reza Moosavi-Zare, Parvin Moosavi, Hendrik Gerhardus Kruger, Morteza Shiri, and Vahid Khakyzadeh, “Synthesis of Pyranopyrazoles Using Isonicotinic Acid as a Dual and Biological Organocatalyst,” RSC Advances 3, no. 48 (2013): 25681–5. doi:10.1039/c3ra45289a.
  • Madhusudana Reddy, V. P. Jayashankara, and M. A. Pasha, “Glycine-Catalyzed Efficient Synthesis of Pyranopyrazoles via One-Pot Multicomponent Reaction,” Synthetic Communications 40, no. 19 (2010): 2930–4. doi:10.1080/00397910903340686.
  • Hemant V. Chavan, Santosh B. Babar, Rahul U. Hoval, and Babasaheb P. Bandgar, “Rapid One-Pot, Four Component Synthesis of Pyranopyrazoles Using Heteropolyacid under Solvent-Free Condition,” Bulletin of the Korean Chemical Society 32, no. 11 (2011): 3963–6. doi:10.5012/bkcs.2011.32.11.3963.
  • Guda Mallikarjuna Reddy, and Jarem Raul Garcia, “Synthesis of Pyranopyrazoles under Eco‐Friendly Approach by Using Acid Catalysis,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 89–94. doi:10.1002/jhet.2544.
  • Aisha Siddekha, Aatika Nizam, and M. A. Pasha, “An Efficient and Simple Approach for the Synthesis of Pyranopyrazoles Using Imidazole (Catalytic) in Aqueous Medium, and the Vibrational Spectroscopic Studies on 6-Amino-4-(4'-Methoxyphenyl)-5-Cyano-3-Methyl-1-Phenyl-1,4-Dihydropyrano[2,3-c]Pyrazole Using Density Functional Theory, ” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 81, no. 1 (2011): 431–40. doi:10.1016/j.saa.2011.06.033.
  • Kuppusamy Kanagaraj, and Kasi Pitchumani, “Solvent-Free Multicomponent Synthesis of Pyranopyrazoles: Per-6-Amino-β-Cyclodextrin as a Remarkable Catalyst and Host,” Tetrahedron Letters 51, no. 25 (2010): 3312–6. doi:10.1016/j.tetlet.2010.04.087.
  • Sunil N. Darandale, Jaiprakash N. Sangshetti, and Devanand B. Shinde, “Ultrasound Mediated, Sodium Bisulfite Catalyzed, Solvent Free Synthesis of 6-Amino-3-Methyl-4-Substitued-2, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitrile,” Journal of the Korean Chemical Society 56, no. 3 (2012): 328–33. doi:10.5012/jkcs.2012.56.3.328.
  • Ashishkumar Katariya, Satish Deshmukh, S. B. Munde, Maya Katariya, and Rajendra Pawar,"Green and expeditious one pot synthesis of pyrano[2,3-c]pyrazole using potassium ter-butoxide catalyst in aqueous medium" International Journal of Green and Herbal Chemistry 8, no. 3 (2019): 790–7.
  • Hormi Mecadon, Md Rumum Rohman, Mantu Rajbangshi, and Bekington Myrboh, “γ-Alumina as a Recyclable Catalyst for the Four-Component Synthesis of 6-Amino-4-Alkyl/Aryl-3-Methyl-2, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitriles in Aqueous Medium,” Tetrahedron Letters 52, no. 19 (2011): 2523–5. doi:10.1016/j.tetlet.2011.03.036.
  • Jitender M. Khurana, Bhaskara Nand, and Sanjay Kumar, “Rapid Synthesis of Polyfunctionalized Pyrano [2, 3-c] Pyrazoles via Multicomponent Condensation in Room-Temperature Ionic Liquids,” Synthetic Communications 41, no. 3 (2011): 405–10. doi:10.1080/00397910903576669.
  • Farid Moeinpour, and Amir Khojastehnezhad, “Polyphosphoric Acid Supported on Ni0. 5Zn0. 5Fe2O4 Nanoparticles as a Magnetically-Recoverable Green Catalyst for the Synthesis of Pyranopyrazoles,” Arabian Journal of Chemistry 10 (2017): S3468–S3474. doi:10.1016/j.arabjc.2014.02.009.
  • Maryam Babaie, and Hassan Sheibani, “Nanosized Magnesium Oxide as a Highly Effective Heterogeneous Base Catalyst for the Rapid Synthesis of Pyranopyrazoles via a Tandem Four-Component Reaction,” Arabian Journal of Chemistry 4, no. 2 (2011): 159–62. doi:10.1016/j.arabjc.2010.06.032.
  • Arijit Saha, Soumen Payra, and Subhash Banerjee, “One-Pot Multicomponent Synthesis of Highly Functionalized Bio-Active Pyrano [2, 3-c] Pyrazole and Benzylpyrazolyl Coumarin Derivatives Using ZrO2 Nanoparticles as a Reusable Catalyst,” Green Chemistry 17, no. 5 (2015): 2859–66. doi:10.1039/C4GC02420F.
  • Ashok Vishram Borhade, and Bhagwat Karbhari Uphade, “ZnS Nanoparticles as an Efficient and Reusable Catalyst for Synthesis of 4H-Pyrano [2, 3-c] Pyrazoles,” Journal of the Iranian Chemical Society 12, no. 6 (2015): 1107–13. doi:10.1007/s13738-014-0571-y.
  • Gnanasambandam Vasuki, and Kandhasamy Kumaravel, “Rapid Four-Component Reactions in Water: synthesis of Pyranopyrazoles,” Tetrahedron Letters 49, no. 39 (2008): 5636–8. doi:10.1016/j.tetlet.2008.07.055.
  • Javad Ebrahimi, Ali Mohammadi, Vahid Pakjoo, Ehsan Bahramzade, and Amir Habibi, “Highly Efficient Solvent-Free Synthesis of Pyranopyrazoles by a Brønsted-Acidic Ionic Liquid as a Green and Reusable Catalyst,” Journal of Chemical Sciences 124, no. 5 (2012): 1013–7. doi:10.1007/s12039-012-0310-9.
  • Siddique A. Ansari, Satish U. Deshmukh, Rajesh B. Patil, Manoj G. Damale, Rajendra H. Patil, Hamad M. Alkahtani, Abdulrahman A. Almehizia, Hanaa M. Al‐Tuwajiri, Fadilah S. Aleanizy, Fulwah Y. Alqahtani, et al, “Identification of Promising Biofilm Inhibitory and Cytotoxic Quinazolin‐4‐One Derivatives: Synthesis, Evaluation, Molecular Docking and ADMET Studies,” ChemistrySelect 4, no. 12 (2019): 3559–66. doi:10.1002/slct.201803795.
  • Vinod V. Thorat, Satish A. Dake, Satish U. Deshmukh, Elayaraja Rasokkiyam, Farees Uddin, and Rajendra P. Pawar, “Ionic Liquid Mediated Synthesis of Novel Tetrahydroimidazo [1, 2-a] Pyrimidine-6-Carboxylate Derivatives,” Letters in Organic Chemistry 10, no. 3 (2013): 178–84. doi:10.2174/1570178611310030006.
  • Satish Uttamrao Deshmukh, Kiran Ramesh Kharat, Gajanan Gulabrao Kadam, and Rajendra Pundlikrao Pawar, “Synthesis of Quinazolinones Derivatives an Antiproliferative Agent against Human Lung Carcinoma Cells,” European Journal of Chemistry 8, no. 3 (2017): 317–20. doi:10.5155/eurjchem.8.3.317-320.1586.
  • Bourbigou Hélene Olivier, L. Magna, and D. Morvan, “Ionic Liquids and Catalysis: Recent Progress from Knowledge to Applications,” Applied Catalysis A: General 373, no. 1-2 (2010): 1–56. doi:10.1016/j.apcata.2009.10.008.
  • Bakhtar Ullah, Jingwen Chen, Zhiguo Zhang, Huabin Xing, Qiwei Yang, Zongbi Bao, and Qilong Ren, “1-Ethyl-3-Methylimidazolium Acetate as a Highly Efficient Organocatalyst for Cyanosilylation of Carbonyl Compounds with Trimethylsilyl Cyanide,” Scientific Reports 7, no. 1 (2017): 42699–7. doi:10.1038/srep42699.
  • Gerald Ebner, Philipp Vejdovszky, Ronny Wahlström, Anna Suurnäkki, Michael Schrems, Paul Kosma, Thomas Rosenau, and Antje Potthast, “The Effect of 1-Ethyl-3-Methylimidazolium Acetate on the Enzymatic Degradation of Cellulose,” Journal of Molecular Catalysis B: Enzymatic 99 (2014): 121–9. doi:10.1016/j.molcatb.2013.11.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.