1,283
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Combined Experimental and Computational Study of Polycyclic Aromatic Compound Aggregation: The Impact of Solvent Composition

, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 3790-3809 | Received 17 Nov 2021, Accepted 06 May 2022, Published online: 23 May 2022

References

  • J. S. Buckley, “Predicting the Onset of Asphaltene Precipitation from Refractive Index Measurements,” Energy & Fuels 13, no. 2 (1999): 328–32. doi:10.1021/ef980201c.
  • G. Porte, H. Zhou, and V. Lazzeri, “Reversible Description of Asphaltene Colloidal Association and Precipitation,” Langmuir 19, no. 1 (2003): 40–47. doi:10.1021/la0260279.
  • I. A. Wiehe, Process Chemistry of Petroleum Macromolecules (Boca Raton, FL: CRC Press, 2008).
  • M. R. Gray, R. R. Tykwinski, J. M. Stryker, and X. Tan, “Supramolecular Assembly Model for Aggregation of Petroleum Asphaltenes,” Energy & Fuels 25, no. 7 (2011): 3125–34. doi:10.1021/ef200654p.
  • C. Jian, T. Tang, and S. Bhattacharjee, “Probing the Effect of Side-Chain Length on the Aggregation of a Model Asphaltene Using Molecular Dynamics Simulations,” Energy & Fuels 27, no. 4 (2013): 2057–67. doi:10.1021/ef400097h.
  • O. C. Mullins, “The Modified Yen Model,” Energy & Fuels 24, no. 4 (2010): 2179–207. doi:10.1021/ef900975e.
  • B. Zhao and J. M. Shaw, “Composition and Size Distribution of Coherent Nanostructures in Athabasca Bitumen and Maya Crude Oil,” Energy & Fuels 21, no. 5 (2007): 2795–804. doi:10.1021/ef070119u.
  • F. Mostowfi, K. Indo, O. C. Mullins, and R. McFarlane, “Asphaltene Nanoaggregates Studied by Centrifugation,” Energy & Fuels 23, no. 3 (2009): 1194–200. doi:10.1021/ef8006273.
  • B. Schuler, Y. Zhang, F. Liu, A. E. Pomerantz, A. B. Andrews, L. Gross, V. Pauchard, S. Banerjee, and O. C. Mullins, “Overview of Asphaltene Nanostructures and Thermodynamic Applications,” Energy & Fuels 34, no. 12 (2020): 15082–105. doi:10.1021/acs.energyfuels.0c00874.
  • M. L. Waters, “Aromatic Interactions in Model Systems,” Current Opinion in Chemical Biology 6, no. 6 (2002): 736–41. doi:10.1016/S1367-5931(02)00359-9.
  • S. Wang, J. Liu, L. Zhang, J. Masliyah, and Z. Xu, “Interaction Forces between Asphaltene Surfaces in Organic Solvents,” Langmuir 26, no. 1 (2010): 183–90. doi:10.1021/la9020004.
  • M. P. Hoepfner, C. Vilas Bôas Fávero, N. Haji-Akbari, and H. S. Fogler, “The Fractal Aggregation of Asphaltenes,” Langmuir 29, no. 28 (2013): 8799–808. doi:10.1021/la401406k.
  • S. M. Hashmi and A. Firoozabadi, “Effect of Dispersant on Asphaltene Suspension Dynamics: aggregation and Sedimentation,” The Journal of Physical Chemistry B 114, no. 48 (2010): 15780–88. doi:10.1021/jp107548j.
  • Y. Zhang, M. Siski, M. R. Gray, C. C. Walters, and R. P. Rodgers, “Mechanisms of Asphaltene Aggregation: Puzzles and a New Hypothesis,” Energy & Fuels 34, no. 8 (2020): 9094–107. doi:10.1021/acs.energyfuels.0c01564.
  • P. Wattana, “Precipitation and Characterization of Petroleum Asphaltenes” (PhD thesis, University of Michigan, 2004).
  • T. Maqbool, A. T. Balgoa, and H. S. Fogler, “Revisiting Asphaltene Precipitation from Crude Oils: A Case of Neglected Kinetic Effects,” Energy & Fuels 23, no. 7 (2009): 3681–86. doi:10.1021/ef9002236.
  • T. Maqbool, P. Srikiratiwong, and H. S. Fogler, “Effect of Temperature on the Precipitation Kinetics of Asphaltenes,” Energy & Fuels 25, no. 2 (2011): 694–700. doi:10.1021/ef101112r.
  • I. A. Wiehe, and R. J. Kennedy, “The Oil Compatibility Model and Crude Oil Incompatibility,” Energy & Fuels 14, no. 1 (2000): 56–59. doi:10.1021/ef990133+.
  • S. W. Hasan, M. T. Ghannam, and N. Esmail, “Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation,” Fuel 89, no. 5 (2010): 1095–100. doi:10.1016/j.fuel.2009.12.021.
  • I. K. Yudin, G. L. Nikolaenko, E. E. Gorodetskii, E. L. Markhashov, V. A. Agayan, M. A. Anisimov, and J. V. Sengers, “Crossover Kinetics of Asphaltene Aggregation in Hydrocarbon Solutions,” Physica A: Statistical Mechanics and Its Applications 251, no. 1–2 (1998): 235–44. doi:10.1016/S0378-4371(97)00607-9.
  • O. C. Mullins, E. Y. Sheu, A. Hammami, and A. G. Marshall, Asphaltenes, Heavy Oils, and Petroleomics (New York: Springer, 2007).
  • I. K. Yudin, G. L. Nikolaenko, E. E. Gorodetskii, V. I. Kosov, V. R. Melikyan, E. L. Markhashov, D. Frot, and Y. Briolant, “Mechanisms of Asphaltene Aggregation in Toluene–Heptane Mixtures,” Journal of Petroleum Science and Engineering 20, no. 3–4 (1998): 297–301. doi:10.1016/S0920-4105(98)00033-3.
  • J.-A. Östlund, S.-I. Andersson, and M. Nydén, “Studies of Asphaltenes by the Use of Pulsed-Field Gradient Spin Echo NMR,” Fuel 80, no. 11 (2001): 1529–33. doi:10.1016/S0016-2361(01)00030-8.
  • E. Durand, M. Clemancey, A. A. Quoineaud, J. Verstraete, D. Espinat, and J. M. Lancelin, “1H Diffusion-Ordered Spectroscopy (DOSY) Nuclear Magnetic Resonance (NMR) as a Powerful Tool for the Analysis of Hydrocarbon Mixtures and Asphaltenes,” Energy & Fuels 22, no. 4 (2008): 2604–10. doi:10.1021/ef700775z.
  • E. Durand, M. Clemancey, J. M. Lancelin, J. Verstraete, D. Espinat, and A. A. Quoineaud, “Aggregation States of Asphaltenes: Evidence of Two Chemical Behaviors by 1H Diffusion-Ordered Spectroscopy Nuclear Magnetic Resonance,” The Journal of Physical Chemistry C 113, no. 36 (2009): 16266–76. doi:10.1021/jp901954b.
  • E. Durand, M. Clemancey, J. M. Lancelin, J. Verstraete, D. Espinat, and A. A. Quoineaud, “Effect of Chemical Composition on Asphaltenes Aggregation,” Energy & Fuels 24, no. 2 (2010): 1051–62. doi:10.1021/ef900599v.
  • J.-P. Korb, A. Louis-Joseph, and L. Benamsili, “Probing Structure and Dynamics of Bulk and Confined Crude Oils by Multiscale NMR Spectroscopy, Diffusometry, and Relaxometry,” The Journal of Physical Chemistry B 117, no. 23 (2013): 7002–14. doi:10.1021/jp311910t.
  • M. Jones, and S. E. Taylor, “NMR Relaxometry and Diffusometry in Characterizing Structural, Interfacial and Colloidal Properties of Heavy Oils and Oil Sands,” Advances in Colloid and Interface Science 224 (2015): 33–45. doi:10.1016/j.cis.2015.07.007.
  • E. V. Morozov, P. V. Yushmanov, and O. N. Martyanov, “Temperature-Triggered Rearrangement of Asphaltene Aggregates as Revealed by Pulsed-Field Gradient NMR,” Energy & Fuels 33, no. 8 (2019): 6934–45. doi:10.1021/acs.energyfuels.9b00600.
  • I. A. Wiehe, H. W. Yarranton, K. Akbarzadeh, P. M. Rahimi, and A. Teclemariam, “The Paradox of Asphaltene Precipitation with Normal Paraffins,” Energy & Fuels 19, no. 4 (2005): 1261–67. doi:10.1021/ef0496956.
  • B. Breure, D. Subramanian, J. Leys, C. J. Peters, and M. A. Anisimov, “Modeling Asphaltene Aggregation with a Single Compound,” Energy & Fuels 27, no. 1 (2013): 172–76. doi:10.1021/ef3016766.
  • Robel B. Teklebrhan, Lingling Ge, Subir Bhattacharjee, Zhenghe Xu, and Johan Sjöblom, “Probing Structure-Nanoaggregation Relations of Polyaromatic Surfactants: A Molecular Dynamics Simulation and Dynamic Light Scattering Study,” The Journal of Physical Chemistry. B 116, no. 20 (2012): 5907–18. doi:10.1021/jp3010184.
  • J. Eyssautier, D. Frot, and L. Barré, “Structure and Dynamic Properties of Colloidal Asphaltene Aggregates,” Langmuir 28, no. 33 (2012): 11997–2004. doi:10.1021/la301707h.
  • C. S. Johnson, “Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: principles and Applications,” Progress in Nuclear Magnetic Resonance Spectroscopy 34, no. 3–4 (1999): 203–56. doi:10.1016/S0079-6565(99)00003-5.
  • E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time‐Dependent Field Gradient,” The Journal of Chemical Physics 42, no. 1 (1965): 288–92. doi:10.1063/1.1695690.
  • R. Tanaka, E. Sato, J. E. Hunt, R. E. Winans, S. Sato, and T. Takanohashi, “Characterization of Asphaltene Aggregates Using X-Ray Diffraction and Small-Angle X-Ray Scattering,” Energy & Fuels 18, no. 4 (2004): 1118–25. doi:10.1021/ef034082z.
  • J.-N. Roux, D. Broseta, and B. Demé, “SANS Study of Asphaltene Aggregation: Concentration and Solvent Quality Effects,” Langmuir 17, no. 16 (2001): 5085–92. doi:10.1021/la0101651.
  • T. F. Headen, E. S. Boek, J. Stellbrink, and U. M. Scheven, “Small Angle Neutron Scattering (SANS and V-SANS) Study of Asphaltene Aggregates in Crude Oil,” Langmuir 25, no. 1 (2009): 422–28. doi:10.1021/la802118m.
  • D. Espinat, D. Fenistein, L. Barré, D. Frot, and Y. Briolant, “Effect of Temperature and Pressure on Asphaltenes Agglomeration in Toluene. A Light, X-Ray, and Neutron Scattering Investigation,” Energy & Fuels 18, no. 5 (2004): 1243–49. doi:10.1021/ef030190+.
  • J. Eyssautier, P. Levitz, D. Espinat, J. Jestin, J. Gummel, I. Grillo, and L. Barré, “Insight into Asphaltene Nanoaggregate Structure Inferred by Small Angle Neutron and X-Ray Scattering,” The Journal of Physical Chemistry B 115, no. 21 (2011): 6827–37. doi:10.1021/jp111468d.
  • A. Hemmati-Sarapardeh, B. Dabir, M. Ahmadi, A. H. Mohammadi, and M. M. Husein, “Toward Mechanistic Understanding of Asphaltene Aggregation Behaviour in Toluene: The Roles of Asphaltene Structure, Aging Time, Temperature, and Ultrasonic Radiation,” Journal of Molecular Liquids 264 (2018): 410–24. doi:10.1016/j.molliq.2018.04.061.
  • T. F. Headen, E. S. Boek, G. Jackson, T. S. Totton, and E. A. Müller, “Simulation of Asphaltene Aggregation through Molecular Dynamics: Insights and Limitations,” Energy & Fuels 31, no. 2 (2017): 1108–25. doi:10.1021/acs.energyfuels.6b02161.
  • M. Sedghi, L. Goual, W. Welch, and J. Kubelka, “Effect of Asphaltene Structure on Association and Aggregation Using Molecular Dynamics,” The Journal of Physical Chemistry B 117, no. 18 (2013): 5765–76. doi:10.1021/jp401584u.
  • T. F. Headen, E. S. Boek, and N. T. Skipper, “Evidence for Asphaltene Nanoaggregation in Toluene and Heptane from Molecular Dynamics Simulations,” Energy & Fuels 23, no. 3 (2009): 1220–29. doi:10.1021/ef800872g.
  • S. Yaseen and G. A. Mansoori, “Molecular Dynamics Studies of Interaction between Asphaltenes and Solvents,” Journal of Petroleum Science and Engineering 156 (2017): 118–24. doi:10.1016/j.petrol.2017.05.018.
  • M. H. Khalaf and G. A. Mansoori, “A New Insight into Asphaltenes Aggregation Onset at Molecular Level in Crude Oil (an MD Simulation Study),” Journal of Petroleum Science and Engineering 162 (2018): 244–50. doi:10.1016/j.petrol.2017.12.045.
  • M. Thomas, I. Suarez-Martinez, L.-J. Yu, A. Karton, G. S. Chandler, M. Robinson, I. Cherchneff, D. Talbi, and D. Spagnoli, “Atomistic Simulations of the Aggregation of Small Aromatic Molecules in Homogenous and Heterogenous Mixtures,” Physical Chemistry Chemical Physics 22, no. 37 (2020): 21005–14. doi:10.1039/d0cp02622k.
  • X. Tan, H. Fenniri, and M. R. Gray, “Pyrene Derivatives of 2,2′-Bipyridine as Models for Asphaltenes: Synthesis, Characterization, and Supramolecular Organization,” Energy & Fuels 22, no. 2 (2008): 715–20. doi:10.1021/ef700395g.
  • J. Sjöblom, S. Simon, and Z. Xu, “Model Molecules Mimicking Asphaltenes,” Advances in Colloid and Interface Science 218 (2015): 1–16. doi:10.1016/j.cis.2015.01.002.
  • D. Simionesie, G. O’Callaghan, R. Laurent, J. A. Preece, R. Evans, and Z. J. Zhang, “Combined Experimental and Computational Study of Polyaromatic Hydrocarbon Aggregation: Isolating the Effect of Attached Functional Groups,” Industrial & Engineering Chemistry Research 58, no. 45 (2019): 20505–15. doi:10.1021/acs.iecr.9b04105.
  • R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (New York: Springer, 2013).
  • A. Vaccaro, J. Šefčík, and M. Morbidelli, “Characterization of Colloidal Polymer Particles through Stability Ratio Measurements,” Polymer 46, no. 4 (2005): 1157–67. doi:10.1016/j.polymer.2004.11.058.
  • A. Jerschow and N. Müller, “Suppression of Convection Artifacts in Stimulated-Echo Diffusion Experiments. Double-Stimulated-Echo Experiments,” Journal of Magnetic Resonance 125, no. 2 (1997): 372–75. doi:10.1006/jmre.1997.1123.
  • M. Nilsson, “The DOSY Toolbox: A New Tool for Processing PFG NMR Diffusion Data,” Journal of Magnetic Resonance 200, no. 2 (2009): 296–302. doi:10.1016/j.jmr.2009.07.022.
  • A. Gierer, and K. Wirtz, “Molekulare Theorie Der Mikroreibung,” Zeitschrift für Naturforschung A 8, no. 9 (1953): 532–38. doi:10.1515/zna-1953-0903.
  • R. Evans, Z. Deng, A. K. Rogerson, A. S. McLachlan, J. J. Richards, M. Nilsson, and G. A. Morris, “Quantitative Interpretation of Diffusion-Ordered NMR Spectra: Can We Rationalize Small Molecule Diffusion Coefficients?,” Angewandte Chemie (International Edition in English) 52, no. 11 (2013): 3199–202. doi:10.1002/anie.201207403.
  • C. Jian, “Molecular Dynamics Investigation on the Aggregation of Polyaromatic Compounds in Water and Organic Solvents” (PhD thesis, University of Alberta, 2015).
  • D. van der Spoel, E. Lindahl, B. Hess, and The Gromacs Development Team, Gromacs User Manual (version 4.6.5) (2013).
  • A. R. Leach, Molecular Modelling: Principles and Applications, 2nd ed. (London: Pearson Education, 2001).
  • G. Bussi, D. Donadio, and M. Parrinello, “Canonical Sampling through Velocity Rescaling,” The Journal of Chemical Physics 126, no. 1 (2007): 014101. doi:10.1063/1.2408420.
  • J. D. Chodera, “A Simple Method for Automated Equilibration Detection in Molecular Simulations,” Journal of Chemical Theory and Computation 12, no. 4 (2016): 1799–805. doi:10.1021/acs.jctc.5b00784.
  • M. R. Shirts and J. D. Chodera, “Statistically Optimal Analysis of Samples from Multiple Equilibrium States,” The Journal of Chemical Physics 129, no. 12 (2008): 124105. doi:10.1063/1.2978177.
  • E. S. Boek, D. S. Yakovlev, and T. F. Headen, “Quantitative Molecular Representation of Asphaltenes and Molecular Dynamics Simulation of Their Aggregation,” Energy & Fuels 23, no. 3 (2009): 1209–19. doi:10.1021/ef800876b.
  • J. Costa, D. Simionesie, P. Mulhera, and Z. J. Zhang, “Aggregation of Model Asphaltenes: A Molecular Dynamics Study,” Journal of Physics. Condensed Matter 28, no. 39 (2016): 394002. doi:10.1088/0953-8984/28/39/394002.
  • T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems,” The Journal of Chemical Physics 98, no. 12 (1993): 10089–92. doi:10.1063/1.464397.
  • T. F. Headen, P. L. Cullen, R. Patel, A. Taylor, and N. T. Skipper, “The Structures of Liquid Pyridine and Naphthalene: The Effects of Heteroatoms and Core Size on Aromatic Interactions,” Physical Chemistry Chemical Physics 20, no. 4 (2018): 2704–15. doi:10.1039/c7cp06689a.
  • T. F. Headen and M. P. Hoepfner, “Predicting Asphaltene Aggregate Structure from Molecular Dynamics Simulation: Comparison to Neutron Total Scattering Data,” Energy & Fuels 33, no. 5 (2019): 3787–95. doi:10.1021/acs.energyfuels.8b03196.
  • N. Michaud, ‐Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, “MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations,” Journal of Computational Chemistry 32, no. 10 (2011): 2319–27. doi:10.1002/jcc.21787.
  • R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, et al. “MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations,” in Proceedings of the 15th Python in Science Conference, edited by S. Benthall and S. Rostrup (Austin, TX: Scipy, 2016), 98–105.
  • K. Oh, T. A. Ring, and M. D. Deo, “Asphaltene Aggregation in Organic Solvents,” Journal of Colloid and Interface Science 271, no. 1 (2004): 212–19. doi:10.1016/j.jcis.2003.09.054.
  • K. Mannistu, H. Yarranton, and J. Masliyah, “Solubility Modeling of Asphaltenes in Organic Solvents,” Energy & Fuels 11, no. 3 (1997): 615–22. doi:10.1021/ef9601879.
  • S. Badre, C. C. Goncalves, K. Norinaga, G. Gustavson, and O. C. Mullins, “Molecular Size and Weight of Asphaltene and Asphaltene Solubility Fractions from Coals, Crude Oils and Bitumen,” Fuel 85, no. 1 (2006): 1–11. doi:10.1016/j.fuel.2005.05.021.
  • P. Painter, B. Veytsman, and J. Youtcheff, “Asphaltene Aggregation and Solubility,” Energy & Fuels 29, no. 4 (2015): 2120–33. doi:10.1021/ef5024912.
  • J. Wang and J. Buckley, “A Two-Component Solubility Model of the Onset of Asphaltene Flocculation in Crude Oils,” Energy & Fuels 15, no. 5 (2001): 1004–12. doi:10.1021/ef010012l.
  • S. Figueroa-Gerstenmaier, S. Giudice, L. Cavallo, and G. Milano, “A Molecular Model for H(2) Interactions in Aliphatic and Aromatic Hydrocarbons,” Physical Chemistry Chemical Physics 11, no. 20 (2009): 3935–42. doi:10.1039/b900176j.
  • J. Murgich, “Intermolecular Forces in Aggregates of Asphaltenes and Resins,” Petroleum Science and Technology 20, no. 9–10 (2002): 983–97. doi:10.1081/LFT-120003692.
  • X. Tan, H. Fenniri, and M. R. Gray, “Water Enhances the Aggregation of Model Asphaltenes in Solution via Hydrogen Bonding,” Energy & Fuels 23, no. 7 (2009): 3687–93. doi:10.1021/ef900228s.
  • S. R. Stoyanov, C. X. Yin, M. R. Gray, J. M. Stryker, S. Gusarov, and A. Kovalenko, “Computational and Experimental Study of the Structure, Binding Preferences, and Spectroscopy of Nickel(II) and Vanadyl Porphyrins in Petroleum,” The Journal of Physical Chemistry. B 114, no. 6 (2010): 2180–88. doi:10.1021/jp908641t.
  • L. Moreira da Costa, S. R. Stoyanov, S. Gusarov, P. R. Seidl, J. Walkimar de, M. Carneiro, and A. Kovalenko, “Computational Study of the Effect of Dispersion Interactions on the Thermochemistry of Aggregation of Fused Polycyclic Aromatic Hydrocarbons as Model Asphaltene Compounds in Solution,” The Journal of Physical Chemistry. A 118, no. 5 (2014): 896–908. doi:10.1021/jp408005h.
  • Y. Aray, R. Hernández-Bravo, J. G. Parra, J. Rodríguez, and D. S. Coll, “Exploring the Structure-Solubility Relationship of Asphaltene Models in Toluene, Heptane, and Amphiphiles Using a Molecular Dynamic Atomistic Methodology,” The Journal of Physical Chemistry A 115, no. 42 (2011): 11495–507. doi:10.1021/jp204319n.
  • S. Kumar, “Recent Developments in the Chemistry of Triphenylene-Based Discotic Liquid Crystals,” Liquid Crystals 31, no. 8 (2004): 1037–59. doi:10.1080/02678290410001724746.
  • T. Bast and R. Hentschke, “Molecular Dynamics Simulation of a Micellar System: 2,3,6,7,10,11-Hexakis (1,4,7-Trioxaoctyl) Triphenylene in Water,” The Journal of Physical Chemistry 100, no. 30 (1996): 12162–71. doi:10.1021/jp953790l.
  • Richard J. Bushby, Neville Boden, Colin A. Kilner, Owen R. Lozman, Zhibao Lu, Quanying Liu, and Mark A. Thornton-Pett, “Helical Geometry and Liquid Crystalline Properties of 2,3,6,7,10,11-Hexaalkoxy-1-Nitrotriphenylenes,” Journal of Materials Chemistry 13, no. 3 (2003): 470–74. doi:10.1039/b211133k.
  • H. Groenzin and O. C. Mullins, “Asphaltene Molecular Size and Structure,” The Journal of Physical Chemistry A 103, no. 50 (1999): 11237–45. doi:10.1021/jp992609w.
  • Oliver C. Mullins, Hassan Sabbah, Joëlle Eyssautier, Andrew E. Pomerantz, Loïc Barré, A. Ballard Andrews, Yosadara Ruiz-Morales, Farshid Mostowfi, Richard McFarlane, Lamia Goual, et al, “Advances in Asphaltene Science and the Yen–Mullins Model,” Energy & Fuels 26, no. 7 (2012): 3986–4003. doi:10.1021/ef300185p.
  • P. V. Hemmingsen, A. Silset, A. Hannisdal, and J. Sjöblom, “Emulsions of Heavy Crude Oils. I: Influence of Viscosity, Temperature, and Dilution,” Journal of Dispersion Science and Technology 26, no. 5 (2005): 615–27. doi:10.1081/DIS-200057671.
  • Erland L. Nordgård, Geir Sørland, and Johan Sjöblom, “Behavior of Asphaltene Model Compounds at W/O Interfaces,” Langmuir 26, no. 4 (2010): 2352–60. doi:10.1021/la902801c.
  • P. Chakrabarti and R. Bhattacharyya, “Geometry of Nonbonded Interactions Involving Planar Groups in Proteins,” Progress in Biophysics and Molecular Biology 95, no. 1–3 (2007): 83–137. doi:10.1016/j.pbiomolbio.2007.03.016.
  • G. B. McGaughey, M. Gagné, and A. K. Rappé, “π-Stacking Interactions. Alive and Well in Proteins,” The Journal of Biological Chemistry 273, no. 25 (1998): 15458–63. doi:10.1074/jbc.273.25.15458.
  • S. P. Brown, I. Schnell, J. D. Brand, K. Müllen, and H. W. Spiess, “An Investigation of π-π Packing in a Columnar Hexabenzocoronene by Fast Magic-Angle Spinning and Double-Quantum 1H Solid-State NMR Spectroscopy,” Journal of the American Chemical Society 121, no. 28 (1999): 6712–18. doi:10.1021/ja990637m.
  • D. A. Ballard, M. L. Chacón-Patiño, P. Qiao, K. J. Roberts, R. Rae, P. J. Dowding, Z. Xu, and D. Harbottle, “Molecular Characterization of Strongly and Weakly Interfacially Active Asphaltenes by High-Resolution Mass Spectrometry,” Energy & Fuels 34, no. 11 (2020): 13966–76. doi:10.1021/acs.energyfuels.0c02752.
  • D. A. Ballard, P. Qiao, B. Cattoz, P. J. Dowding, S. Prevost, M. Alshamsi, T. Charpentier, K. J. Roberts, Z. Xu, and D. Harbottle, “Aggregation Behavior of E-SARA Asphaltene Fractions Studied by Small-Angle Neutron Scattering,” Energy & Fuels 34, no. 6 (2020): 6894–903. doi:10.1021/acs.energyfuels.0c00596.