456
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green Synthesis and Biological Activity Investigation of New Thiazinotriazines: A Combined Experimental and Theoretical Investigation

, , ORCID Icon & ORCID Icon
Pages 3613-3639 | Received 02 Mar 2022, Accepted 27 Apr 2022, Published online: 31 May 2022

References

  • P. N. Kalaria, S. C. Karad, and D. K. Raval, “A Review on Diverse Heterocyclic Compounds as the Privileged Scaffolds in Antimalarial Drug Discovery,” European Journal of Medicinal Chemistry 158 (2018): 917–36. doi:10.1016/j.ejmech.2018.08.040.
  • N. Desai, A. Trivedi, U. Pandit, A. Dodiya, V. K. Rao, and P. Desai, “Hybrid Bioactive Heterocycles as Potential Antimicrobial Agents: A Review,” Mini Reviews in Medicinal Chemistry 16, no. 18 (2016): 1500–26. doi:10.2174/1389557516666160609075620.
  • M. M. Fouad, E. R. El-Bendary, G. M. Suddek, I. A. Shehata, and M. M. El-Kerdawy, “Synthesis and In Vitro Antitumor Evaluation of Some New Thiophenes and Thieno[2,3-d]Pyrimidine Derivatives,” Bioorganic Chemistry 81 (2018): 587–98. doi:10.1016/j.bioorg.2018.09.022.
  • P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista, and A. R. Fernandes, “Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box,” Molecules (Basel, Switzerland) 20, no. 9 (2015): 16852–91. doi:10.3390/molecules200916852.
  • N. Siddiqui, S. Andalip Bawa, R. Ali, O. Afzal, M. J. Akhtar, B. Azad, and R. Kumar, "Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review," Journal of Pharmacy and Bioallied Sciences 3 (2011): 194–212. doi:10.4103/0975-7406.80765.
  • A. S. Sokolova, O. I. Yarovaya, N. I. Bormotov, L. N. Shishkina, and N. F. Salakhutdinov, “Synthesis and Antiviral Activity of Camphor-Based 1,3-Thiazolidin-4-One and Thiazole Derivatives as Orthopoxvirus-Reproduction Inhibitors,” MedChemComm 9, no. 10 (2018): 1746–53. doi:10.1039/c8md00347e.
  • A. Goel, N. Agarwal, F. V. Singh, A. Sharon, P. Tiwari, M. Dixit, R. Pratap, A. K. Srivastava, P. R. Maulik, and V. Ram, “Antihyperglycemic Activity of 2-Methyl-3,4,5-Triaryl-1H-Pyrroles in SLM and STZ Models,” Bioorganic & Medicinal Chemistry Letters 14, no. 5 (2004): 1089–92. doi:10.1016/j.bmcl.2004.01.009.
  • M. Amir, S. A. Javed, and H. Kumar, “Pyrimidine as Antiinflammatory Agent: A Review,” Indian Journal of Pharmaceutical Sciences 69, no. 3 (2007): 337–43. doi:10.4103/0250-474X.34540.
  • W. Li, S. J. Zhao, F. Gao, Z. S. Lv, J. Y. Tu, and Z. Xu, Chemistry Select 3 (2018): 10250.
  • X. Zhao, S. T. Chaudhry, and J. Mei, “Heterocyclic Building Blocks for Organic Semiconductors.” In Heterocyclic Chemistry in the 21st Century a Tribute to Alan Katritzky. Vol. 121 (New York City, Springer, 2017), 133–71.
  • T. A. Khattab and M. A. Rehan, "A Review on Synthesis of Nitrogen-Containing Heterocyclic Dyes for Textile Fibers - Part 2: Fused Heterocycles," Egyptian Journal of Chemistry 61 (2018): 989–1018.
  • C. Lamberth and J. Dinges, Bioactive Heterocyclic Compound Classes: Agrochemicals (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co, KGaA, 2012).
  • S. Zhi, X. Ma, and W. Zhang, “Consecutive Multicomponent Reactions for the Synthesis of Complex Molecules,” Organic & Biomolecular Chemistry 17, no. 33 (2019): 7632–50. doi:10.1039/C9OB00772E.
  • I. A. Ibarra, A. Islas-Jácome, and E. González-Zamora, “Synthesis of Polyheterocycles via Multicomponent Reactions,” Organic & Biomolecular Chemistry 16, no. 9 (2018): 1402–18. doi:10.1039/c7ob02305g.
  • L. F. Tietze, C. Bsasche, and K. M. Gericke, Domino Reactions in Organic Synthesis (Weinheim: Wiley-VCH, 2006).
  • L. Weber, M. Illgen, and M. Almstetter, “Discovery of New Multi Component Reactions with Combinatorial Methods,” Synlett 1999, no. 3 (1999): 366–74. doi:10.1055/s-1999-2612.
  • R. P. Herrera and E. Marqués-López, Multicomponent Reactions: Concepts and Applications for Design and Synthesis (Hoboken: Wiley, 2015).
  • Scott B. Hoyt, Clare London, David Gorin, Matthew J. Wyvratt, Michael H. Fisher, Catherine Abbadie, John P. Felix, Maria L. Garcia, Xiaohua Li, Kathryn A. Lyons, et al., “Discovery of a Novel Class of Benzazepinone Na(v)1.7 Blockers: Potential Treatments for Neuropathic Pain,” Bioorganic & Medicinal Chemistry Letters 17, no. 16 (2007): 4630–4. doi:10.1016/j.bmcl.2007.05.076.
  • A. M. Egert-Schmidt, J. Dreher, U. Dunkel, S. Kohfeld, L. Preu, H. Weber, J. E. Ehlert, B. Mutschler, F. Totzke, C. Schachtele, et al., "Design, synthesis, and BK channel-opening activity of hexahydrodibenzazepinone derivatives," Bioorganic & Medicinal Chemistry 14 (2006): 8014.
  • P. Cuijpers, M. Sijbrandij, S. L. Koole, G. Andersson, A. T. Beekman, and C. F. Reynolds, “III the Efficacy of Psychotherapy and Pharmacotherapy in Treating Depressive and Anxiety Disorders: A Meta-Analysis of Direct Comparisons,” World Psychiatry 12, no. 2 (2013): 137–48. doi:10.1002/wps.20038.
  • J. Ignacio Andrés, Jesús Alcázar, José M. Alonso, Adolfo Dı́az, Javier Fernández, Pilar Gil, Laura Iturrino, Encarna Matesanz, Theo F. Meert, Anton Megens, et al., “Synthesis and Structure − Activity Relationship of 2-(Aminoalkyl)-2, 3, 3a, 8-Tetrahydrodibenzo[c,f]isoxazolo[2,3-a]azepine Derivatives: A Novel Series of 5-HT2A/2C Receptor Antagonists. Part 1.” Bioorganic & Medicinal Chemistry Letters 12, no. 2 (2002): 243–8. doi:10.1016/S0960-894X(01)00721-1.
  • Karl Rickels, Nicholas DeMartinis, Felipe García-España, David J. Greenblatt, Laura A. Mandos, and Moira Rynn, “Imipramine and Buspirone in Treatment of Patients with Generalized Anxiety Disorder Who Are Discontinuing Longterm Benzodiazepine Therapy,” American Journal of Psychiatry 157, no. 12 (20001973): 1973–9. doi:10.1176/appi.ajp.157.12.1973.
  • K. Rickels, H. R. Chung, I. B. Csanalosi, A. M. Hurowitz, J. London, K. Wiseman, M. Kaplan, and J. D. Amsterdam, “Alprazolam, Diazepam, Imipramine, and Placebo in Outpatients with Major Depression,” Archives of General Psychiatry 44, no. 10 (1987): 862–6. doi:10.1001/archpsyc.1987.01800220024005.
  • J. Nielsen, C. U. Correll, P. Manu, and J. M. Kane, “Termination of Clozapine Treatment Due to Medical Reasons: When is It Warranted and How Can It Be Avoided?,” The Journal of Clinical Psychiatry 74, no. 6 (2013): 603–13. doi:10.4088/JCP.12r08064.
  • K. Ahmed and J. L. Turk, “Effect of Anticancer Agents Neothramycin, Aclacinomycin, FK-565 and FK-156 on the Release of Interleukin-2 and Interleukin-1 In Vitro,” Cancer Immunology, Immunotherapy: CII 28, no. 2 (1989): 87–92.
  • A. W. White, R. Almassy, A. H. Calvert, N. J. Curtin, R. J. Griffin, Z. Hostomsky, K. Maegley, D. R. Newell, S. Srinivasan, and B. T. Golding, “Resistance-Modifying Agents. 9. Synthesis and Biological Properties of Benzimidazole Inhibitors of the DNA Repair Enzyme Poly (ADP-Ribose) Polymerase,” Journal of Medicinal Chemistry 43, no. 22 (2000): 4084–97. doi:10.1021/jm000950v.
  • Angela Musella, Erlisa Bardhi, Claudia Marchetti, Laura Vertechy, Giusy Santangelo, Carolina Sassu, Federica Tomao, Francesco Rech, Renzo D'Amelio, Marco Monti, et al., “Rucaparib: An Emerging Parp Inhibitor for Treatment of Recurrent Ovarian Cancer,” Cancer Treatment Reviews 66 (2018): 7–14. doi:10.1016/j.ctrv.2018.03.004.
  • P. D. Johnson, P. A. Aristoff, G. E. Zurenko, R. D. Schaadt, B. H. Yagi, C. W. Ford, J. C. Hamel, D. Stapert, and J. K. Moerman, “Synthesis and Biological Evaluation of Benzazepine Oxazolidinone Antibacterials,” Bioorganic & Medicinal Chemistry Letters 13, no. 23 (2003): 4197–200. doi:10.1016/j.bmcl.2003.07.017.
  • R. Wang, R.-X. Jin, Z.-Y. Qin, K.-J. Bian, and X.-S. Wang, “Novel and Facile Synthesis of 1-Benzazepines via Copper-Catalyzed Oxidative C(sp3)-H/C(sp2)-H Cross-Coupling,” Chemical Communications (Cambridge, England) 53, no. 90 (2017): 12229–32. doi:10.1039/c7cc07027f.
  • M. Shalini, P. Yogeeswari, D. Sriram, and J. Stables, “Cyclization of the Semicarbazone Template of Aryl Semicarbazones: Synthesis and Anticonvulsant Activity of 4,5-Diphenyl-2H-1,2,4-triazol-3(4H)-One,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 63, no. 3 (2009): 187–93. doi:10.1016/j.biopha.2006.04.002.
  • M. Seto, N. Miyamoto, K. Aikawa, Y. Aramaki, N. Kanzaki, Y. Iizawa, M. Baba, and M. Shiraishi, “Orally Active CCR5 Antagonists as anti-HIV-1 Agents. Part 3: Synthesis and Biological Activities of 1-Benzazepine Derivatives Containing a Sulfoxide Moiety,” Bioorganic & Medicinal Chemistry 13, no. 2 (2005): 363–86. doi:10.1016/j.bmc.2004.10.021.
  • S. Chumpradit, M. P. Kung, J. J. Billings, and H. F. Kung, “Synthesis and Resolution of (±)-7-Chloro-8-Hydroxy-1-(3′-Iodophenyl)-3-Methyl-2, 3, 4, 5-Tetrahydro-1H-3-Benzazepine (TISCH): A High Affinity and Selective Iodinated Ligand for CNS D1 Dopamine Receptor [Erratum to Document Cited in CA114 (13): 122017d],” Journal of Medicinal Chemistry 34, no. 12 (1991): 3405. doi:10.1021/jm00116a013.
  • V. G. Kartsev, A. A. Zubenko, A. S. Morkovnik, and L. N. A. Divaeva, “Facile, One Pot Method for the Synthesis of 4-Acyl-1, 2-Dihydro-3-Benzazepines, Based on the Ring Expansion of Natural and Synthetic 3, 4-Dihydroisoquinoline Pseudo Bases,” Tetrahedron Letters 56 (2015): 6988–6993. (b) M. Kawase, S. Saito, and N. Motohashi, “Chemistry and Biological Activity of New 3-Benzazepines,” International Journal of Antimicrobial Agents 14 (2000): 193–201.
  • R. Sahay, J. Sundaramurthy, P. Suresh Kumar, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, “Synthesis and Characterization of CuO Nanofibers, and Investigation for Its Suitability as Blocking Layer in ZnO NPs Based Dye Sensitized Solar Cell and as Photocatalyst in Organic Dye Degradation,” Journal of Solid State Chemistry 186 (2012): 261–267. doi:10.1016/j.jssc.2011.12.013.
  • Y. Yang, B. Xu, J. He, J. Shi, L. Yu, and Y. Fan, "Magnetically separable mesoporous silica-supported palladium nanoparticle-catalyzed selective hydrogenation of naphthalene to tetralin," Applied Organometallic Chemistry 33 (2019): e5204.
  • Y. Zhao, L. Xu, Ch. Yang, T. Chen, and L. Yu, 'Design and preparation of magnetic mesoporous melamine–formaldehyde resin: A novel material for pre-concentration and determination of silver," Applied Organometallic Chemistry 33 (2019): e5112.
  • Y. Yang, B. Xu, J. He, J. Shi, L. Yu, and Y. Fan, “Design and Synthesis of Fe3O4@SiO2@mSiO2-Fe: A Magnetically Separable Catalyst for Selective Oxidative Cracking Reaction of Styrene Using Air as Partial Oxidant,” Applied Catalysis A: General 590 (2020): 117353. doi:10.1016/j.apcata.2019.117353.
  • X. Chen, J. Mao, C. Liu, C. Chen, H. Cao, and L. Yu, “An Unexpected Generation of Magnetically Separable Se/Fe3O4 for Catalytic Degradation of Polyene Contaminants with Molecular Oxygen,” Chinese Chemical Letters 31, no. 12 (2020): 3205–3208. doi:10.1016/j.cclet.2020.07.031.
  • B.-T. Zhang, X. Zheng, H.-F. Li, and J.-M. Lin, “Application of Carbon-Based Nanomaterials in Sample Preparation: A Review,” Analytica Chimica Acta 784 (2013): 1–17. doi:10.1016/j.aca.2013.03.054.
  • I. E. Wachs, “Recent Conceptual Advances in the Catalysis Science of Mixed Metal Oxide Catalytic Materials,” Catalysis Today 100, no. 1–2 (2005): 79–94. doi:10.1016/j.cattod.2004.12.019.
  • Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, and Y. Yang, “Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry,” Chemical Society Reviews 43, no. 10 (2014): 3480–3524. doi:10.1039/c3cs60282f.
  • Arif Daştan, Aditya Kulkarni, and Béla Török, “Environmentally Benign Synthesis of Heterocyclic Compounds by Combined Microwave-Assisted Heterogeneous Catalytic Approaches †,” Green Chemistry 14, no. 1 (2012): 17–37. doi:10.1039/C1GC15837F.
  • Magdalena Jabłońska and Regina Palkovits, “Nitrogen Oxide Removal over Hydrotalcite-Derived Mixed Metal Oxides,” Catalysis Science & Technology 6, no. 1 (2016): 49–72. doi:10.1039/C5CY00646E.
  • J. Shi, “On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts,” Chemical Reviews 113, no. 3 (2013): 2139–2181. doi:10.1021/cr3002752.
  • S. Lin-Bing, L. Xiao-Qin, and Z. Hong-Cai, "Design and fabrication of mesoporous heterogeneous basic catalysts," Chemical Society Reviews 44 (2015): 5092–5147.
  • Q. Zhang, K. D. V. Vigier, S. Royer, and F. Jerome, “Deep Eutectic Solvents: Syntheses, Properties and Applications,” Chemical Society Reviews 41, no. 21 (2012): 7108–7146. doi:10.1039/c2cs35178a.
  • E. Kalantari, M. A. Khalilzadeh, D. Zareyee, and M. Shokouhimehr, “Catalytic Degradation of Organic Dyes Using Green Synthesized Fe3O4-Cellulose-Copper Nanocomposites,” Journal of Molecular Structure 1218 (2020): 128488. doi:10.1016/j.molstruc.2020.128488.
  • M. A. Khalilzadeh, S. Hosseini, A. S. Rad, and R. A. Venditti, “Synthesis of Grafted Nanofibrillated Cellulose-Based Hydrogel and Study of Its Thermodynamic, Kinetic, and Electronic Properties,” Journal of Agricultural and Food Chemistry 68, no. 32 (2020): 8710–8719. doi:10.1021/acs.jafc.0c03500.
  • M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews 95, no. 1 (1995): 69–96. doi:10.1021/cr00033a004.
  • M. M. Haque and M. Muneer, “TiO2-Mediated Photocatalytic Degradation of a Textile Dye Derivative, Bromothymol Blue, in Aqueous Suspensions,” Dyes and Pigments 75, no. 2 (2007): 443–448. doi:10.1016/j.dyepig.2006.06.043.
  • Z. Clemente, V. L. S. S. Castro, M. A. M. Moura, C. M. Jonsson, and L. F. Fraceto, “Toxicity Assessment of TiO2 Nanoparticles in Zebrafish Embryos under Different Exposure Conditions,” Aquatic Toxicology (Amsterdam, Netherlands) 147 (2014): 129–139. doi:10.1016/j.aquatox.2013.12.024.
  • Matic Krivec, Kristina Žagar, Luka Suhadolnik, Miran Čeh, and Goran Dražić, “Highly Efficient TiO2-Based Microreactor for Photocatalytic Applications,” ACS Applied Materials & Interfaces 5, no. 18 (2013): 9088–9094. doi:10.1021/am402389t.
  • Y. Yang, G. Wang, Q. Deng, D. H. L. Ng, and H. Zhao, “Microwave-Assisted Fabrication of Nanoparticulate TiO(2) Microspheres for Synergistic Photocatalytic Removal of Cr(VI) and Methyl Orange,” ACS Applied Materials & Interfaces 6, no. 4 (2014): 3008–3015. doi:10.1021/am405607h.
  • Y. Dong, D. Tang, and C. Li, “Photocatalytic Oxidation of Methyl Orange in Water Phase by Immobilized TiO2-Carbon Nanotube Nanocomposite Photocatalyst,” Applied Surface Science 296 (2014): 1–7. doi:10.1016/j.apsusc.2013.12.128.
  • Y. Zhang, J. Wan, and Y. Ke, “A Novel Approach of Preparing TiO2 Films at Low Temperature and Its Application in Photocatalytic Degradation of Methyl Orange,” Journal of Hazardous Materials 177, no. 1–3 (2010): 750–754. doi:10.1016/j.jhazmat.2009.12.095.
  • J. H. Im, S. J. Yang, C. H. Yun, and C. R. Park, “Simple Fabrication of Carbon/TiO2 Composite Nanotubes Showing Dual Functions with Adsorption and Photocatalytic Decomposition of Rhodamine B,” Nanotechnology 23, no. 3 (2012): 035604–035614. doi:10.1088/0957-4484/23/3/035604.
  • A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man, “ZnO Nanostructures: Growth, Properties and Applications,” Journal of Materials Chemistry 22, no. 14 (2012): 6526–6535. doi:10.1039/c2jm15548f.
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31, no. 4 (1999): 261–272. (b) F. Ahmadi, M. Kadivar, and M. Shahedi, "Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems, " Food Chemistry 105 (2007): 57–64. doi:10.1080/10715769900300841.
  • Mark A. Babizhayev, Anatoly I. Deyev, Valentina N. Yermakova, Igor V. Brikman, and Johan Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R&D 5, no. 3 (2004): 125–139. doi:10.2165/00126839-200405030-00001.
  • L. Liu and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Reviews 60, no. 11 (2002): 368–371. doi:10.1301/00296640260385810.
  • (a) I. Yavari, S. Seyfi, and Z. S. Hossaini, “Formation of Trialkyl Quinoline-2, 3, 4-Tricarboxylates by Reaction of Isatin, Dialkyl Acetylenedicarboxylates, and Sodium O-Alkyl Carbonodithioates,” Tetrahedron Letters 51 (2010) 2193–2194. (b) E. Ezzatzadeh and Z. S. Hossaini, “Green Synthesis and Antioxidant Activity of Novel Series of Benzofurans from Euparin Extracted of Petasites Hybridus,” Natural Product Research 33 (2019): 1617–1623. (c) I. Yavari, M. Sabbaghan, K. Porshamsian, M. Bagheri, S. Ali-Asgari, and Z. S. Hossaini, “Efficient Synthesis of Alkyl 2-[2-(Arylcarbonylimino)-3-Aryl-4-Oxo-1, 3-Thiazolan-5-Ylidene]-Acetates,” Molecular Diversity 11 (2007): 81–85. (d) M. Z. Kassaee, Z. S. Hossaini, B. N. Haerizade, and S. Z. Sayyed-Alangi, “Ab Initio Study of Steric Effects Due to Dialkyl Substitutions on H2C3 Isomers,” Journal of Molecular Structure: THEOCHEM 1–3 (2004): 129–135.
  • (a) S. H. Hekmatara, M. Mohammadi, and M. Haghani, “Novel Water-Soluble, Copolymer Capped Zinc Oxide Nanorods with High Photocatalytic Activity for Degradation of Organic Pollutants from Water,” Chemical Physics Letters 730 (2019): 345–353. (b) A. Ebrahimi, S. M. Habibi, A. Sanati, and M. A. Mohammadi, “Comparison of C–C Rotational Barrier in [2] Staffane,[2] Tetrahedrane and Ethane,” Chemical Physics Letters 466. (2008): 32–36. (c) H. R. Masoodi, S. Bagheri, M. Mohammadi, M. Zakarianezhad, and B. Makiabadi, “The Influence of Cation–π and Anion–π Interactions on Some NMR Data of s-Triazine… HF Hydrogen Bonding: A Theoretical Study,” Chemical Physics Letters 588 (2013): 31–36. (d) M. Mohammadi, S. H. Hekmatara, R. S. Moghaddam, and A. Darehkordi, “Preparation and Optimization Photocatalytic Activity of Polymer-Grafted Ag@ AgO Core-Shell Quantum Dots,” Environmental Science and Pollution Research 26 (2019): 13401–13409.
  • (a) K. Khandan-Barani, M. T. Maghsoodlou, and A. Hassanabadi, “Synthesis of Maleate Derivatives in Isocyanide-Base MCRs: Reaction of 2-Mercaptobenzoxazole with Alkyl Isocyanides and Dialkyl Acetylenedicarboxylates,” Research on Chemical Intermediates 41 (2015): 3011–3016. (b) A. Hassanabadi and K. Khandan-Barani, “Three-Component and One-Pot Reaction between Phenacyl Bromide and Primary Amines in the Presence of Carbon Disulfide,” Journal of Chemical Research 37. (2013): 71–72. (c) M. T. Maghsoodlou, N. Hazeri, K. Khandan‐Barani, and S. M. Habibi‐Khorasani, “Synthesis of 1‐(Cyclohexylamino)‐2‐(Aryl) Pyrrolo [1, 2‐a] Quinoline‐3‐Carbonitrile Derivatives Using a Mild, Four‐Component Reaction,” Journal of Heterocyclic Chemistry 51 (2014): E152–E155. (d) K. Khandan-Barani, M. T. Maghsoodlou, S. M. Habibi-Khorasani, and N. Hazeri, “Three-Component Reaction between Alkyl (Aryl) Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Ethyl Trifluoroacetate,” Journal of Chemical Research 35 (2011): 231–233.
  • (a) S. Soleimani-Amiri, M. Arabkhazaeli, and Z. S. Hossaini, “Synthesis of Chromene Derivatives via Three-Component Reaction of 4-Hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 209. (b) Amiri S. Soleimani, M. Koohi, and B. Mirza, “Characterizations of B and N Heteroatoms as Substitutional Doping on Structure, Stability, and Aromaticity of Novel Heterofullerenes Evolved from the Smallest Fullerene Cage,” Journal of Physical Organic Chemistry 29 (2016): 514–522. (c) M. Koohi, S. Soleimani Amiri, and M. Shariati, “Silicon Impacts on Structure, Stability and Aromaticity of C20-nSin Heterofullerenes (n= 1–10): A Density Functional Perspective,” Journal of Molecular Structure 1127 (2017): 522–531. (d) H. Ghavidel, B. Mirza, and S. A. Soleimani-Amiri, “Novel, Efficient, and Recoverable Basic Fe3O4@C Nano-Catalyst for Green Synthesis of 4H-Chromenes in Water via One-Pot Three Component Reactions,” Polycyclic Aromatic Compounds 41 (2021): 604–625. doi:10.1002/jhet.3028.
  • (a) E. Ezzatzadeh, M. H. Farjam, A. Rustaiyan, “Comparative Evaluation of Antioxidant, and Antimicrobial Activity of Crude Extract, and Secondary Metabolites Isolated from Artemisia Kulbadica,” Asian Pacific Journal of Tropical Disease 2 (2012): S431–S434. (b) A. Rustaiyan, S. Masoudi, E. Ezzatzadeh, H. Akhlaghi, and J. Aboli, “Composition of the Aerial Part, Flower, Leaf and Stem Oils of Eremostachys Macrophylla Montbr. & Auch. and Eremostachys Labiosa Bunge. from Iran,” Journal of Essential Oil Bearing Plants 14 (2011): 84–88. (c) A. Rustaiyan, and E. Ezzatzadeh, “Sesquiterpene Lactones and Penta Methoxylated Flavone from Artemisia Kulbadica,” Asian Journal of Chemistry 23 (2011): 1774–1776.
  • (a) S. Salehi Borban, M. Gharachorloo, and F. Zamani Hargalani, “Check Amount of Heavy Metals in Muscle and Fish Oil Rutilus Frisii Kutum, Clupeonella Cultriventris and Liza Saliens,” Journal of Food Technology and Nutrition 6 (2017): 75–104. (b) F. Zamani Hargalani, A. Karbassi, S. M. Monavari, and P. Abroomand Azar, “Origin and Partitioning of Heavy Metals in Sediments of the Anzali Wetland,” Environmental Sciences 11 (2013): 79-88.  (c) N. F. Hamedani, F. Zamani Hargalani, and F. Rostami-Charati, “Biosynthesis of Cu/KF/Clinoptilolite@ MWCNTs Nanocomposite and Its Application as a Recyclable Nanocatalyst for the Synthesis of New Schiff Base of Benzoxazine Derivatives and Reduction of Organic Pollutants,” Molecular Diversity (2021). doi:10.1007/s11030-021-10316-1.  (d) R. N. Mahmonir, V. Abdossi, F. Zamani Hargalani, and K. Larijani, “The Response of Hypericum Perfpratum L. to the Application of Selenium and Nano-Selenium,” Research Square (2021).doi: 10.21203/rs.3.rs-708123/v1
  • (a) R. Hajinasiri, Z. S. Hossaini, and F. Sheikholeslami-Farahani, “ZnO-Nanorods as the Catalyst for the Synthesis of 1,3-Thiazole Derivatives via Multicomponent Reactions,” Combinatorial Chemistry & High Throughput Screening 18, no. 1 (2015): 42–47. (b) F. Sheikholeslami-Farahani, Z. S. Hossaini, and F. Rostami-Charati, “Solvent-Free Synthesis of Substituted Thiopyrans via Multicomponent Reactions of α-Haloketones,” Chinese Chemical Letters 25 (2014): 152–154. (c) M. Ghazvini, F. Sheikholeslami-Farahani, S. Soleimani-Amiri, and M. Salimifard, “Green Synthesis of Pyrido [2, 1-a] Isoquinolines and Pyrido [1, 2-a] Quinolines by Using ZnO Nanoparticles,” Synlett 29 (2018): 493–496. (c) Z. S. Hossaini and F. Rostami-Charati, Sheikholeslami-Farahani, F. and Ghasemian, M. “Synthesis of Functionalized Benzene Using Diels–Alder Reaction of Activated Acetylenes with Synthesized Phosphoryl-2-Oxo-2H-Pyran,” Zeitschrift Für Naturforschung B 70 (2015): 355–360. doi:10.2174/1386207317666141203123133.
  • (a) M. Ghashghaee, and M. Ghambarian, “Defect Engineering and Zinc Oxide Doping of Black Phosphorene for Nitrogen Dioxide Capture and Detection: Quantum-Chemical Calculations,” Applied Surface Science 523 (2020): 146527. (b) M. Ghashghaee, M. Ghambarian, and Z. Azizi, “Molecular-Level Insights into Furfural Hydrogenation Intermediates over Single-Atomic Cu Catalysts on Magnesia and Silica Nanoclusters,” Molecular Simulation 45 (2019): 154–163. (c) Z. Azizi, M. Ghambarian, M. A. Rezaei, M. Ghashghaee, and N. Saturated, “X-Heterocyclic Carbenes (X = N, O, S, P, Si, C, and B): Stability, Nucleophilicity, and Basicity,” Australian Journal of Chemistry 68 (2015): 1438–1445. (d) M. Z. Kassaee, M. Ghambarian, and S. M. Musavi, “Halogen Switching of Azacarbenes C2NH Ground States at Ab Initio and DFT Levels. Heteroatom Chemistry,” An International Journal of Main Group Elements 19 (2008): 377–388.
  • (a) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Substitutional Doping of Black Phosphorene with Boron, Nitrogen, and Arsenic for Sulfur Trioxide Detection: A Theoretical Perspective,” Journal of Sulfur Chemistry 41 (2020): 399–420. (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Diversity of Monomeric Dioxo Chromium Species in Cr/Silicalite-2 Catalysts: A Hybrid Density Functional Study,” Computational Materials Science 118 (2016): 147–154. (c) M. Ghambarian, M. Ghashghaee, and Z. Azizi, “Coordination and Siting of Cu + Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study,” Physical Chemistry Research 5 (2017): 135–152. (d) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Adsorption of Iron (II, III) Cations on Pristine Heptazine and Triazine Polymeric Carbon Nitride Quantum Dots of Buckled and Planar Structures: Theoretical Insights,” Adsorption 26 (2020): 429–442.
  • (a) A. S. Shahvelayati and Z. Esmaeeli, “Efficient Synthesis of S-Dipeptidothiouracil Derivatives via a One-Pot, Five-Component Reaction under Ionic Liquid Condition,” Journal of Sulfur Chemistry 33 (2012): 319–325. (b) I. Yavari, M. Ghazvini, A. S. Shahvelayati, and M. M. Ghanbari, “A One-Pot Synthesis of Functionalized 2, 3-Dihydrothiazoles from Isothiocyanates, Primary Alkylamines, and Phenacyl Bromides,” Phosphorus, Sulfur, and Silicon 186 (2010): 134–139. (c) I. Yavari, A. S. Shahvelayati, M. Ghanbari, M. Ghazvini, and M. Piltan, “One-Pot Synthesis of Functionalized α-Acyloxythioamides from N-Protected a-Amino Acids as an Acid Component in the Passerini Reaction in an Ionic Liquid,” Journal of the Iranian Chemical Society 8 (2011): 636–642. (d) Ghazvini, M. Shahvelayati, A. S. Sabri, and A. Nasrabadi Fz, “Synthesis of Furan and Dihydrofuran Derivatives via Feist–Benary Reaction in the Presence of Ammonium Acetate in Aqueous Ethanol,” Chemistry of Heterocyclic Compounds 52 (2016): 161–164.
  • (a) F. Shafaei, S. E. Babaei, A. S. Shahvelayati, and F. Honarmand Janatabadi, “Biosynthesis of Fe3O4-Magnetic Nanoparticles Using Clover Leaf Aqueous Extract: Green Synthesis of 1,3-Benzoxazole Derivatives,” Journal of the Chinese Chemical Society 67 (2020): 891–897. (b) F. Shafaei and Sh. Sharafian, “Green Synthesis of Imidazole Derivatives via Fe3O4-MNPs as Reusable Catalyst,” Journal of Heterocyclic Chemistry 56 (2019): 2644–2650. (c) S. Soleimani-Amiri, F. Shafaei, A. Varasteh Moradi, F. Gholami-Orimi, and Z. Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]-Oxazoles Using Fe3O4-Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56 (2019): 2744–2752.
  • (a) M. Balar, Z. Azizi, and M. Ghashghaee, “Theoretical Identification of Structural Heterogeneities of Divalent Nickel Active Sites in NiMCM-41 Nanoporous Catalysts,” Journal of Nanostructure in Chemistry 6, no. 4 (2016): 365–372. (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Remarkable Improvement in Phosgene Detection with a Defect-Engineered Phosphorene Sensor: First-Principles Calculations,” Physical Chemistry Chemical Physics 22 (2020): 9677–9684. (c) M. Z. Kassaee, M. R. Momeni, F. A. Shakib, M. Ghambarian, and S. M. Musavi, “Novel α-Spirocyclic (Alkyl)(Amino) Carbenes at the Theoretical Crossroad of Flexibility and Rigidity,” Structural Chemistry 21 (2010): 593–598. doi:10.1007/s40097-016-0208-z.
  • (a) S. Seifi Mansour, E. Ezzatzadeh, and R. Safarkar, “In Vitro Evaluation of Its Antimicrobial Effect of the Synthesized Fe3O4 Nanoparticles Using Persea Americana Extract as a Green Approach on Two Standard Strains,” Asian Journal of Green Chemistry 3 (2019): 353–365. (b) M. Ghashghaee, M. Ghambarian, and Z. Azizi, “Theoretical Insights into Sensing of Hexavalent Chromium on Buckled and Planar Polymeric Carbon Nitride Nanosheets of Heptazine and Triazine Structures,” Molecular Simulation 46 (2020): 54–61.
  • (a) E. Ezzatzadeh, S. F. I. Sofla, E. Pourghasem, A. Rustaiyan, and A. Zarezadeh, “Antimicrobial Activity and Chemical Constituents of the Essential Oils from Root, Leaf and Aerial Part of Nepeta Asterotricha from Iran,” Journal of Essential Oil Bearing Plants 17, no. 3 (2014): 415–421. (b) M. Z. Kassaee, H. Aref Rad, and S. Soleimani Amiri, “Carbon–Nitrogen Nanorings and Nanoribbons: A Theoretical Approach for Altering the Ground States of Cyclacenes and Polyacenes,” Monatshefte Fuer Chemie/Chemical Monthly 141 (2010): 1313–1319. doi:10.1080/0972060X.2014.901624.
  • S. P. Rajendran and K. Sengodan, “Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania Grandiflora Leaf Extract as Reducing Agent,” Journal of Nanoscience 2017 (2017): 1–7. doi:10.1155/2017/8348507.
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–948. doi:10.1021/jf00018a005.
  • G. C. Yen and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–632. doi:10.1021/jf00039a005.
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. Extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–4089. doi:10.1021/jf0103572.
  • A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–5652. doi:10.1063/1.464913.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Condensed Matter 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, and D. J. Fox, Gaussian, Gaussian 09 (Revision A.02) (Wallingford, CT: Gaussian, 2009).
  • P. Umadevi and P. Lalitha, “Synthesis and Antimicrobial Evaluation of Amino Substituted 1, 3, 4 Oxo and Thiadiazoles,” International Journal of Pharmacy and Pharmaceutical Sciences 4 (2012): 523–527.
  • Tian Lu and Feiwu Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–592. doi:10.1002/jcc.22885.
  • R. S. Mulliken, “Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I,” Journal of Chemical Physics 23, no. 10 (1955): 1833–1840. doi:10.1063/1.1740588.
  • G. Venkatesh, M. Govindaraju, P. Vennila, and C. Kamal, “Molecular Structure, Vibrational Spectral Assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO–LUMO and NLO Properties of 2-Nitroacetophenone Based on DFT Calculations,” Journal of Theoretical and Computational Chemistry 15, no. 01 (2016): 1650007. doi:10.1142/S0219633616500073.
  • A. C. Mebi, “DFT Study on Structure, Electronic Properties, and Reactivity of Cis-Isomers of [(NC5H4-S)2Fe(CO)2,” Journal of Chemical Sciences 123, no. 5 (2011): 727–731. doi:10.1007/s12039-011-0131-2.
  • J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Pittsburgh, PA: Gaussian, Inc, 1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.