183
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of hexahydroquinolines, 5-amino-1,3-diphenyl-1h-pyrazole-4-carbonitrile and 1-aminoalkyl-2-naphthols derivatives using an engineered copper-based nano-magnetic catalyst (Fe3O4@CQD@Si(OEt)(CH2)3NH@CC@Ad@Cu(OAc)2)

, &
Pages 5041-5073 | Received 17 Feb 2022, Accepted 24 Jun 2022, Published online: 19 Jul 2022

References

  • A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, F. Abi, A. Zare, H. Kaveh, V. Khakyzadeh, M. Kazem-Rostami, A. Parhami, and H. Torabi-Monfared, “Discovery of an in Situ Carbocationic System Using Trityl Chloride as a Homogeneous Organocatalyst for the Solvent-Free Condensation of ß-Naphthol with Aldehydes and Amides/Thioamides/Alkyl Carbamates in Neutral Media,” Tetrahedron 69, no. 1 (2013): 212–8. doi:10.1016/j.tet.2012.10.042.
  • A. R. Moosavi-Zare, M. Ali Zolfigol, S. Farahmand, A. Zare, A. R. Pourali, and R. Ayazi-Nasrabadi, “Synthesis of 2, 4, 6-Triarylpyridines Using ZrOCl2 under Solvent-Free Conditions,” Synlett 25, no. 02 2014): 193–6. doi:10.1055/s-0033-1340088.
  • J.-P. Wan, S.-F. Gan, G.-L. Sun, and Y.-J. Pan, “Novel Regioselectivity: Three-Component Cascade Synthesis of Unsymmetrical 1, 4-and 1, 2-Dihydropyridines,” The Journal of Organic Chemistry 74, no. 7 (2009): 2862–5. doi:10.1021/jo900068z.
  • R. Maggi, R. Ballini, G. Sartori, and R. Sartorio, “Basic Alumina Catalysed Synthesis of Substituted 2-Amino-2-Chromenes via Three-Component Reaction,” Tetrahedron Letters 45, no. 11 (2004): 2297–9. doi:10.1016/j.tetlet.2004.01.115.
  • B. B. Toure, and D. G. Hall, “Natural Product Synthesis Using Multicomponent Reaction Strategies,” Chemical Reviews 109, no. 9 (2009): 4439–86. doi:10.1021/cr800296p.
  • Ali Maleki, Morteza. Aghaei, and Tooraj. Kari, “Facile Synthesis of 7-Aryl-Benzo [h] Tetrazolo [5, 1-b] Quinazoline-5, 6-Dione Fused Polycyclic Compounds by Using a Novel Magnetic Polyurethane Catalyst,” Polycyclic Aromatic Compounds 39, no. 3 (2017): 266–78. doi:10.1080/10406638.2017.1325746.
  • B. Eftekhari-Sis, M. Zirak, and A. Akbari, “Arylglyoxals in Synthesis of Heterocyclic Compounds,” Chemical Reviews 113, no. 5 (2013): 2958–3043. doi:10.1021/cr300176g.
  • M. S. Saini, A. Kumar, J. Dwivedi, and R. Singh, “A Review: Biological Significances of Heterocyclic Compounds,” International Journal of Pharmaceutical Sciences and Research. 4, no. 3 (2013): 66–77.
  • S. K. Bur, and A. Padwa, “The Pummerer Reaction: Methodology and Strategy for the Synthesis of Heterocyclic Compounds,” Chemical Reviews 104, no. 5 (2004): 2401–32. doi:10.1021/cr020090l.
  • J. Xu, and J. Stevenson, “Drug-like Index: A New Approach to Measure Drug-like Compounds and Their Diversity,” Journal of Chemical Information and Computer Sciences 40, no. 5 (2000): 1177–87. doi:10.1021/ci000026+.
  • T.-S. Jin, Y. Yin, L.-B. Liu, and T.-S. Li, “Solid State Synthesis of 5-Oxo-1, 4, 5, 6, 7, 8-Hexahydroquinoline Derivatives without Using Solvent and Catalyst,” Arkivoc 14 (2006): 28–34.
  • S. Kumar, P. Sharma, K. K. Kapoor, and M. S. Hundal, “An Efficient, Catalyst-and Solvent-Free, Four-Component, and One-Pot Synthesis of Polyhydroquinolines on Grinding,” Tetrahedron 64, no. 3 (2008): 536–42. doi:10.1016/j.tet.2007.11.008.
  • D. Chandam, A. Mulik, P. Patil, S. Jagdale, D. Patil, S. Sankpal, and M. Deshmukh, “Oxalic Acid Dihydrate: Proline (LTTM) as a New Generation Solvent for Synthesis of 3, 3-Diaryloxindole and Chromone Based Bis (Indolyl) Alkanes: Green, Chromatography Free Protocol,” Journal of Molecular Liquids 207 (2015): 14–20. doi:10.1016/j.molliq.2015.02.036.
  • M. M. Heravi, K. Bakhtiari, N. M. Javadi, F. F. Bamoharram, M. Saeedi, and H. A. Oskooie, “K7 [PW11CoO40]-Catalyzed One-Pot Synthesis of Polyhydroquinoline Derivatives via the Hantzsch Three Component Condensation,” Journal of Molecular Catalysis A: Chemical 264, no. 1–2 (2007): 50–2. doi:10.1016/j.molcata.2006.09.004.
  • Q. Zhang, X.-M. Ma, H.-X. Wei, X. Zhao, and J. Luo, “Covalently Anchored Tertiary Amine Functionalized Ionic Liquid on Silica Coated nano-Fe 3 O 4 as a Novel, Efficient and Magnetically Recoverable Catalyst for the Unsymmetrical Hantzsch Reaction and Knoevenagel Condensation,” RSC Advances 7, no. 85 (2017): 53861–70. doi:10.1039/C7RA10692K.
  • S. U. Tekale, V. P. Pagore, S. S. Kauthale, and R. P. Pawar, “La2O3/TFE: An Efficient System for Room Temperature Synthesis of Hantzsch Polyhydroquinolines,” Chinese Chemical Letters 25, no. 8 (2014): 1149–52. doi:10.1016/j.cclet.2014.03.037.
  • S. S. Mansoor, K. Aswin, K. Logaiya, and S. P. N. Sudhan, “Bismuth Nitrate as an Efficient Recyclable Catalyst for the One-Pot Multi Component Synthesis of 1, 4-Dihydropyridine Derivatives through Unsymmetrical Hantzsch Reaction,” Journal of Saudi Chemical Society 20 (2016): S100–S108. doi:10.1016/j.jscs.2012.09.010.
  • M. A. Zolfigol, and M. Yarie, “Synthesis and Characterization of Novel Silica-Coated Magnetic Nanoparticles with Tags of Ionic Liquid. Application in the Synthesis of Polyhydroquinolines,” RSC Advances 5, no. 125 (2015): 103617–24. doi:10.1039/C5RA23670C.
  • A. Khazaei, N. Sarmasti, J. Y. Seyf, and M. Tavasoli, “Synthesis of Hexahydroquinoline (HHQ) Derivatives Using ZrOCl 2· 8H 2 O as a Potential Green Catalyst and Optimization of Reaction Conditions Using Design of Experiment (DOE),” RSC Advances 5, no. 123 (2015): 101268–75. doi:10.1039/C5RA16102A.
  • A. Maleki, F. Hassanzadeh-Afruzi, Z. Varzi, and M. S. Esmaeili, “Magnetic Dextrin Nanobiomaterial: An Organic-Inorganic Hybrid Catalyst for the Synthesis of Biologically Active Polyhydroquinoline Derivatives by Asymmetric Hantzsch Reaction,” Materials Science & Engineering. C, Materials for Biological Applications 109 (2020): 110502. doi:10.1016/j.msec.2019.110502.
  • J. Safaei-Ghomi, R. Aghagoli, and H. Shahbazi-Alavi, “Synthesis of Hexahydro-4-Phenylquinoline-3-Carbonitriles Using Fe3O4@ SiO2-SO3H Nanoparticles as a Superior and Retrievable Heterogeneous Catalyst under Ultrasonic Irradiations,” Zeitschrift Für Naturforschung B 73, no. 5 (2018): 269–74. doi:10.1515/znb-2017-0200.
  • P. Kamalzare, B. Mirza, and S. Soleimani-Amiri, “Chitosan Magnetic Nanocomposite: A Magnetically Reusable Nanocatalyst for Green Synthesis of Hantzsch 1, 4-Dihydropyridines under Solvent-Free Conditions,” Journal of Nanostructure in Chemistry 11, no. 2 (2021): 229–43. doi:10.1007/s40097-020-00361-x.
  • A. Khazaei, M. Mahmoudiani Gilan, and N. Sarmasti, “Magnetic-Based Picolinaldehyde–Melamine Copper Complex for the One-Pot Synthesis of Hexahydroquinolines via Hantzsch Four-Component Reactions,” Applied Organometallic Chemistry 32, no. 3 (2018): e4151. doi:10.1002/aoc.4151.
  • T. Akbarpoor, A. Khazaei, J. Y. Seyf, N. Sarmasti, and M. M. Gilan, “One-Pot Synthesis of 2-Amino-3-Cyanopyridines and Hexahydroquinolines Using Eggshell-Based Nano-Magnetic Solid Acid Catalyst via Anomeric-Based Oxidation,” Research on Chemical Intermediates 46, no. 2 (2020): 1539–54. doi:10.1007/s11164-019-04049-y.
  • D. Azarifar, R. Asadpoor, O. Badalkhani, M. Jaymand, E. Tavakoli, and M. Bazouleh, “Sulfamic-Acid-Functionalized Fe3-xTixO4 Nanoparticles as Novel Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solvent-Free Condition,” ChemistrySelect 3, no. 48 (2018): 13722–8. doi:10.1002/slct.201802505.
  • S. Ehsanifar, and M. Mokhtary, “3-Carboxy-1-Sulfopyridin-1-Ium Chloride ([CPySO3H]+ Cl-): An Efficient Catalyst for One-Pot Synthesis of Hexahydroquinoline-3-Carboxamides,” Heterocyclic Communications 24, no. 1 (2018): 27–9. doi:10.1515/hc-2017-0211.
  • A. Maleki, V. Eskandarpour, J. Rahimi, and N. Hamidi, “Cellulose Matrix Embedded Copper Decorated Magnetic Bionanocomposite as a Green Catalyst in the Synthesis of Dihydropyridines and Polyhydroquinolines,” Carbohydrate Polymers 208 (2019): 251–60. doi:10.1016/j.carbpol.2018.12.069.
  • N. Sarmasti, A. Khazaei, and J. Yousefi Seyf, “High Density Sulfonated Magnetic Carbon Quantum Dots as a Photo Enhanced, Photo-Induced Proton Generation, and Photo Switchable Solid Acid Catalyst for Room Temperature One-Pot Reaction,” Research on Chemical Intermediates 45, no. 7 (2019): 3929–42. doi:10.1007/s11164-019-03829-w.
  • A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, J. Afsar, A. Zare, V. Khakyzadeh, and M. H. Beyzavi, “Synthesis of Hexahydroquinolines Using the New Ionic Liquid Sulfonic Acid Functionalized Pyridinium Chloride as a Catalyst,” Chinese Journal of Catalysis 34, no. 10 (2013): 1936–44. doi:10.1016/S1872-2067(12)60678-0.
  • S. A. Salem, A. Khazaei, J. Y. Seyf, N. Sarmasti, and M. Mahmoudiani Gilan, “Preparation of Magnetic Cu (II) Nano-Structure (Based on Nano-Fe3O4) and Application to the Synthesis of Hexahydroquinoline Derivatives,” Polycyclic Aromatic Compounds (2019)
  • A. Khazaei, N. Sarmasti, and J. Yousefi Seyf, “Anchoring High Density Sulfonic Acid Based Ionic Liquid on the Magnetic Nano-Magnetite (Fe3O4), Application to the Synthesis of Hexahydroquinoline Derivatives,” Journal of Molecular Liquids 262 (2018): 484–94. doi:10.1016/j.molliq.2018.04.125.
  • M. Norouzi, A. Ghorbani-Choghamarani, and M. Nikoorazm, “Heterogeneous Cu (ii)/l-His@ Fe 3 O 4 Nanocatalyst: A Novel, Efficient and Magnetically-Recoverable Catalyst for Organic Transformations in Green Solvents,” RSC Advances 6, no. 95 (2016): 92387–401. doi:10.1039/C6RA19776K.
  • E. Tabrizian, and A. Amoozadeh, “Sulfamic Acid-Functionalized Nano-Titanium Dioxide as a Novel and Highly Efficient Heterogeneous Nanocatalyst for One-Pot and Solvent-Free Synthesis of Hexahydroquinolines,” Journal of the Chinese Chemical Society 64, no. 3 (2017): 331–6. doi:10.1002/jccs.201600802.
  • S. Rostamnia, A. Nuri, H. Xin, A. Pourjavadi, and S. H. Hosseini, “Water Dispersed Magnetic Nanoparticles (H2O-DMNPs) of? -Fe2O3 for Multicomponent Coupling Reactions: A Green, Single-Pot Technique for the Synthesis of Tetrahydro-4H-Chromenes and Hexahydroquinoline Carboxylates,” Tetrahedron Letters 54, no. 26 (2013): 3344–7. doi:10.1016/j.tetlet.2013.04.048.
  • M. Nikpassand, L. Zare, and M. Saberi, “Ultrasound-Assisted L-Proline Catalyzed Synthesis of Novel Derivatives of Azo-Linked Dihydropyridines,” Monatshefte Für Chemie - Chemical Monthly 143, no. 2 (2012): 289–93. doi:10.1007/s00706-011-0575-6.
  • B. Aghazadeh, and M. Nikpassand, “2-Amino Glucose” as a Substrate for Synthesis of Magnetically Recoverable Nanocatalyst NiFe2O4@ SiO2@ Amino Glucose for the Green Synthesis of Novel Bis (1, 2-Dihydro-4-Hydroxy-2-Oxoquinolin-3-yl) Methanes,” Carbohydrate Research 483 (2019): 107755. doi:10.1016/j.carres.2019.107755.
  • L. Z Fekri, M. Nikpassand, and K. H. Pour, “Green Aqueous Synthesis of Mono, Bis and Trisdihydropyridines Using Nano Fe3O4 under Ultrasound Irradiation,” Current Organic Synthesis 12, no. 1 (2015): 76–9. doi:10.2174/1570179411666140806005614.
  • D. Azarifar, R. Asadpoor, O. Badalkhani, M. Jaymand, E. Tavakoli, and M. Bazouleh, “Sulfamic-Acid-Functionalized Fe3-xTixO4 Nanoparticles as Novel Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solvent-Free Condition,” ChemistrySelect 3, no. 48 (2018): 13722–8. doi:10.1002/slct.201802505.
  • A. Maleki, V. Eskandarpour, J. Rahimi, and N. Hamidi, “Cellulose Matrix Embedded Copper Decorated Magnetic Bionanocomposite as a Green Catalyst in the Synthesis of Dihydropyridines and Polyhydroquinolines,” Carbohydrate Polymers 208 (2019): 251–60. doi:10.1016/j.carbpol.2018.12.069.
  • N. Sarmasti, A. Khazaei, and J. Yousefi Seyf, “High Density Sulfonated Magnetic Carbon Quantum Dots as a Photo Enhanced, Photo-Induced Proton Generation, and Photo Switchable Solid Acid Catalyst for Room Temperature One-Pot Reaction,” Research on Chemical Intermediates 45, no. 7 (2019): 3929–42. doi:10.1007/s11164-019-03829-w.
  • A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, J. Afsar, A. Zare, V. Khakyzadeh, and M. H. Beyzavi, “Synthesis of Hexahydroquinolines Using the New Ionic Liquid Sulfonic Acid Functionalized Pyridinium Chloride as a Catalyst,” Chinese Journal of Catalysis 34, no. 10 (2013): 1936–44. doi:10.1016/S1872-2067(12)60678-0.
  • N. Sarmasti, J. Yousefi Seyf, and A. Khazaei, “Synthesis and Characterization of [Fe3O4@ CQDs@ Si (CH2) 3NH2@ CC@ EDA@ SO3H]+ Cl- and Fe3O4@ CQDs@ Si (CH2) 3NH2@ CC@ EDA@ Cu Nanocatalyts and Their Application in the Synthesis of 5-Amino-1, 3-Diphenyl-1H-Pyrazole-4-Carbonitrile and 1-(Morpholino (Phenyl) Methyl) Naphthalen-2-ol Derivatives,” Arabian Journal of Chemistry 14, no. 3 (2021): 103026. doi:10.1016/j.arabjc.2021.103026.
  • R. Singh, “Facile One-Pot Synthesis of 5-Amino-1H-Pyrazole-4-Carbonitriles Using Alumina–Silica-Supported MnO2 as Recyclable Catalyst in Water,” Research on Chemical Intermediates 45, no. 9 (2019): 4531–42. doi:10.1007/s11164-019-03847-8.
  • D. Mishra, R. Singh, and C. Rout, “Synthesis of Highly Functionalized Pyrazoles Using AlCl 3 as Catalyst,” Journal of Chemical and Pharmaceutical Research 9 (2017): 16–9.
  • Z. Abshirini, N. Lotfifar, and A. Zare, “A Highly Effectual and Rapid Protocol for the Synthesis of 5-Amino-1, 3-Diaryl-1 H-Pyrazole-4-Carbonitriles Using 1, 3-Disulfonic Acid Imidazolium Trifluoroacetate as a Dual-Functional Catalyst,” Organic Preparations and Procedures International 52, no. 5 (2020): 428–33. doi:10.1080/00304948.2020.1780884.
  • F. Nemati, S. Hasan Nikkhah, and A. Elhampour, “An Environmental Friendly Approach for the Catalyst-Free Synthesis of Highly Substituted Pyrazoles Promoted by Ultrasonic Radiation,” Chinese Chemical Letters 26, no. 11 (2015): 1397–9. doi:10.1016/j.cclet.2015.07.009.
  • A. S. Patki, K. N. Patil, S. Kusuma, D. B. Muley, and A. H. Jadhav, “One-Pot Synthesis of Multicomponent Pyrazole-4-Carbonitrile Derivatives under Solvent-Free Condition by Using Engineered Polyvinyl Alcohol Catalyst,” Research on Chemical Intermediates 47, no. 7 (2021): 2751–73. doi:10.1007/s11164-021-04450-6.
  • N. Singh, and J. Pandey, “DABCO Catalyzed, Green and Efficient, One-Pot Multicomponent Synthesis of 5-Aminopyrazole-4-Carbonitrile,” Current Research in Green and Sustainable Chemistry 4 (2021): 100134. doi:10.1016/j.crgsc.2021.100134.
  • S. Amirnejat, A. Nosrati, and S. Javanshir, “Superparamagnetic Fe3O4@ Alginate Supported L-Arginine as a Powerful Hybrid Inorganic–Organic Nanocatalyst for the One-Pot Synthesis of Pyrazole Derivatives,” Applied Organometallic Chemistry 34, no. 10 (2020): e5888. doi:10.1002/aoc.5888.
  • H. Kiyani, and M. Bamdad, “Sodium Ascorbate as an Expedient Catalyst for Green Synthesis of Polysubstituted 5-Aminopyrazole-4-Carbonitriles and 6-Amino-1, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitriles,” Research on Chemical Intermediates 44, no. 4 (2018): 2761–78. doi:10.1007/s11164-018-3260-0.
  • M. Nikpassand, L. Z. Fekri, R. S. Varma, L. Hassanzadi, and F. S. Pashaki, “Green Synthesis of Novel 5-Amino-Bispyrazole-4-Carbonitriles Using a Recyclable Fe 3 O 4@ SiO 2@ Vanillin@ Thioglycolic Acid Nano-Catalyst,” RSC Advances 12, no. 2 (2022): 834–44. doi:10.1039/d1ra08001f.
  • F. S. Pashaki, and M. Nikpassand, “Synthesis of Novel Azo-Linked 5-Amino-Pyrazole-4-Carbonitrile Derivatives Using Tannic Acid–Functionalized Silica-Coated Fe3O4 Nanoparticles as a Novel, Green, and Magnetically Separable Catalyst,” Frontiers in Chemistry 9 (2021)doi:10.3389/fchem.2021.724745.
  • M. Nikpassand, M. Mamaghani, K. Tabatabaeian, and M. Kupaei Abiazi, “KSF: An Efficient Catalyst for the Regioselective Synthesis of 1, 5-Diaryl Pyrazoles Using Baylis–Hillman Adducts,” Molecular Diversity 13, no. 3 (2009): 389–93. doi:10.1007/s11030-009-9123-2.
  • M. Mamaghani, K. Tabatabaeian, M. Mirzaeinejad, and M. Nikpassand, “One-Pot Facile Conversion of Baylis-Hillman Adducts into 1, 5-Diarylpyrazoles Using Microwave Irradiation,” Journal of the Iranian Chemical Society 3, no. 1 (2006): 89–92. doi:10.1007/BF03245796.
  • .J. Zhu, and H.Bienaymé, (eds). “Multicomponent Reactions,” John Wiley & Sons, 2006.
  • B. List, P. Pojarliev, W. T. Biller, and H. J. Martin, “The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction: Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1, 2-Amino Alcohols,” Journal of the American Chemical Society 124, no. 5 (2002): 827–33. doi:10.1021/ja0174231.
  • R. O. Duthaler, “Proline-Catalyzed Asymmetric a-Amination of Aldehydes and Ketones—an Astonishingly Simple Access to Optically Active a-Hydrazino Carbonyl Compounds,” Angewandte Chemie (International ed. in English) 42, no. 9 (2003): 975–8. doi:10.1002/anie.200390283.
  • M. Betti, “General Condensation Reaction among Naphthol, Aldehyde, and Amine,” Gazzetta Chimica Italiana. 30 (1900): 310–6.
  • G. Cardillo, and M. Orena, "Stereocontrolled cyclofunctionalizations of double bonds through heterocyclic intermediates," Tetrahedron 46, no. 10 (1990): 3321-3408. doi: 10.1016/S0040-4020(01)81510-6.
  • Y. F Wang, T. Izawa, S. Kobayashi, and M. Ohno, “Stereocontrolled Synthesis of (+)-Negamycin from an Acyclic Homoallylamine by 1, 3-Asymmetric Induction,” Journal of the American Chemical Society 104, no. 23 (1982): 6465–6. doi:10.1021/ja00387a060.
  • H. Goudarziafshar, A. R. Moosavi-Zare, and E. Khazael, “One-Pot Three-Component Synthesis of 1-(a-Aminoalkyl)-2-Naphthols Using Nano-[Ni-4MSP](NO3) 2 as a New Catalyst,” Polycyclic Aromatic Compounds (2020): 1–16. doi:10.1080/10406638.2020.1871040.
  • M. A. Zolfigol, S. Baghery, A. R. Moosavi-Zare, and S. M. Vahdat, “Synthesis and Characterization of New 1-(Alpha-Aminoalkyl)-2-Naphthols Using Pyrazine-1, 4-Diium Trinitromethanide {[1, 4-DHPyrazine][C (NO2)(3)](2)} as a Novel Nano-Structured Molten Salt and Catalyst in Compared with Ag-TiO2 Nano Composite,” Journal of Molecular Catalysis A: Chemical 409 (2015): 216–26. doi:10.1016/j.molcata.2015.09.001.
  • H. Goudarziafshar, A. R. Moosavi-Zare, and J. Hasani, “Design and Identification of nano-Mg-[4-Methoxy Phenyl-Salicylaldimine–Methyl-Pyranopyrzole] Cl2 and Its Catalytic Application on the Preparation of 1-(a-Aminoalkyl)-2-Naphthols,” Applied Organometallic Chemistry 34, no. 3 (2020): e5372. doi:10.1002/aoc.5372.
  • H. R. Shaterian, and M. Mohammadnia, “Nanocrystalline TiO2–HClO4 Catalyzed Three-Component Preparation of Derivatives of 1-Amidoalkyl-2-Naphthol, 1-Carbamato-Alkyl-2-Naphthol, 1-(a-Aminoalkyl)-2-Naphthol, and 12-Aryl-8, 9, 10, 12-Tetrahydrobenzo [a]-Xanthen-11-One,” Research on Chemical Intermediates 39, no. 9 (2013): 4221–37. doi:10.1007/s11164-012-0938-6.
  • M. Mokhtary, and M. Torabi, "J. Saudi Chem. Soc 21 (2017) "
  • F. Janati, M. M. Heravi, and A. M. Shokraie, “Solventless Synthesis of 1-(a-Aminoalkyl) Naphthols, Betti Bases, Catalyzed by Nanoparticle Fe3O4 at Room Temperature,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45, no. 1 (2015): 1–5. doi:10.1080/15533174.2012.762381.
  • F. Janati, “Nanocomposite of Fe3O4/Cellulose/Vitamin C as a New Biopolymer Catalyst for Synthesis of 1-(a-Aminoalkyl) Naphthols, Betti Bases,” Eurasian Journal of Analytical Chemistry 13, no. 3 (2018): em31. doi:10.29333/ejac/90249.
  • M. Nasr-Esfahani, M. Montazerozohori, and M. Taei, “Aluminatesulfonic Acid: Novel and Recyclable Nanocatalyst for Efficient Synthesis of Aminoalkyl Naphthols and Amidoalkyl Naphthols,” Comptes Rendus Chimie 19, no. 8 (2016): 986–94. doi:10.1016/j.crci.2016.02.003.
  • A. Kumar, M. Kumar Gupta, and M. Kumar, “Non-Ionic Surfactant Catalyzed Synthesis of Betti Base in Water,” Tetrahedron Letters 51, no. 12 (2010): 1582–4. doi:10.1016/j.tetlet.2010.01.056.
  • M. A. Zolfigol, M. Yarie, and S. Baghery, “[4, 4'-Bipyridine]-1, 1'-Diium Tricyanomethanide as a Nanostructured Molten Salt and Its Catalytic Application in the Synthesis of Tetrahydrobenzo [b] Pyrans, Amido and Aminoalkyl Naphthol Derivatives,” Journal of Molecular Liquids 222 (2016): 923–32. doi:10.1016/j.molliq.2016.07.132.
  • N. Azizi, and M. Edrisi, “Multicomponent Reaction in Deep Eutectic Solvent for Synthesis of Substituted 1-Aminoalkyl-2-Naphthols,” Research on Chemical Intermediates 43, no. 1 (2017): 379–85. doi:10.1007/s11164-016-2628-2.
  • S. Ganesan, N. Rajendran, S. Sundarakumar, A. Ganesan, and B. Pemiah, “ß-Naphthol in Glycerol: A Versatile Pair for Efficient and Convenient Synthesis of Aminonaphthols, Naphtho-1, 3-Oxazines, and Benzoxanthenes,” Synthesis 45, no. 11 (2013): 1564–8. doi:10.1055/s-0033-1338430.
  • M. Rosales-Hurtado, A.. Lebeau, C. Bourouh, G. Cebrian-Torrejon, M. Albalat, M. Jean, J.-V. Naubron, J.-S. Annicotte, Z. Benfodda, and P. Meffre, “Improved Synthesis, Resolution, Absolute Configuration Determination and Biological Evaluation of HLM006474 Enantiomers,” Bioorganic & Medicinal Chemistry Letters 29, no. 3 (2019): 380–2. doi:10.1016/j.bmcl.2018.12.037.
  • T. Akbarpour, A. Khazaei, J. Yousefi Seyf, and N. Sarmasti, “Synthesis of 1-Aminoalkyl-2-Naphthols Derivatives Using an Engineered Copper-Based Nanomagnetic Catalyst (Fe3O4@ CQD@ Si (OEt)(CH2) 3NH@ CC@ N3@ Phenylacetylene@ Cu),” Applied Organometallic Chemistry 35, no. 10 (2021): e6361. doi:10.1002/aoc.6361.
  • R. S. Keri, M. Patil, S. Budagumpi, and B. S. Sasidhar, “An Efficient, Multicomponent Synthesis of Aminoalkylnaphthols via Betti Reaction Using ZSM-5 as a Recoverable and Reusable Catalyst,” Applied Organometallic Chemistry 35, no. 9 (2021): e6316. doi:10.1002/aoc.6316.
  • S. Fathalipour, B. Ataei, and F. Janati, “Aqueous Suspension of Biocompatible Reduced Graphene oxide-Au NPs Composite as an Effective Recyclable Catalyst in a Betti Reaction,” Materials Science & Engineering. C, Materials for Biological Applications 97 (2019): 356–66. doi:10.1016/j.msec.2018.12.048.
  • P. Dutta, C. Dev Pegu, M. L. Deb, and P. K. Baruah, “Deamination of Betti Bases: A Facile Route to 1-Alkyl-2-Naphthols and Phenols via a Metal-Free Transfer Hydrogenation under Microwave Irradiation,” Tetrahedron Letters 56, no. 27 (2015): 4115–8. doi:10.1016/j.tetlet.2015.05.031.
  • A. Mansoori, H. Eshghi, and J. Lari, “Synthesis and Characterization of Betti Bases Derivatives via Green Mannich Reaction by NS-PCS and FHS as the Catalyst,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1470–8. doi:10.1080/10406638.2018.1557705.
  • M. Vahidian, D. Elhamifar, and M. Shaker, “Core–Shell Structured Magnetic Mesoporous Silica-Titania: A Novel, Powerful and Recoverable Nanocatalyst,” Polyhedron 178 (2020): 114326. doi:10.1016/j.poly.2019.114326.
  • P. G. Patil, S. Sehlangia, and D. H. More, “Chitosan-SO3H (CTSA) an Efficient and Biodegradable Polymeric Catalyst for the Synthesis of 4, 4'-(Arylmethylene) Bis (1 H-Pyrazol-5-ol) and a-Amidoalkyl-ß-Naphthol’s,” Synthetic Communications 50, no. 11 (2020): 1696–711. doi:10.1080/00397911.2020.1753078.
  • S. D. Dindulkar, V. G. Puranik, and Y. T. Jeong, “Supported Copper Triflate as an Efficient Catalytic System for the Synthesis of Highly Functionalized 2-Naphthol Mannich Bases under Solvent Free Condition,” Tetrahedron Letters 53, no. 33 (2012): 4376–80. doi:10.1016/j.tetlet.2012.06.022.
  • M. Seddighi, F. Shirini, and M. Mamaghani, “Brønsted Acidic Ionic Liquid Supported on Rice Husk Ash (RHA-[Pmim] HSO4): A Highly Efficient and Reusable Catalyst for the Synthesis of 1-(Benzothiazolylamino) Phenylmethyl-2-Naphthols,” Comptes Rendus Chimie 18, no. 5 (2015): 573–80. doi:10.1016/j.crci.2014.09.003.
  • R. Pourhasan Kisomi, F. Shirini, and M. Golshekan, “Fe3O4@ MCM-41@ ZrCl2: A Novel Magnetic Mesoporous Nanocomposite Catalyst Including Zirconium Nanoparticles for the Synthesis of 1-(Benzothiazolylamino) Phenylmethyl-2-Naphthols,” Applied Organometallic Chemistry 35, no. 6 (2021): e6212. doi:10.1002/aoc.6212.
  • M. Nikpassand, A. Keyhani, L. Z. Fekri, and R. S. Varma, “Mechanochemical Synthesis of Azo-Linked 2-Amino-4H-Chromene Derivatives Using Fe3O4@ SiO2@ KIT-6-NH2@ Schiff-Base Complex Nanoparticles,” Journal of Molecular Structure 1251 (2022): 132065. doi:10.1016/j.molstruc.2021.132065.
  • M. Nikpassand, L. Zare, and M. R. Mousavi, “Comparative Study for the Aqeous Synthesis of New Generation of Diindolylmethanes Using L-Proline, K10 and Nano-Fe3O4 under Ultrasound Irradiation,” Letters in Organic Chemistry 9, no. 5 (2012): 375–81. doi:10.2174/157017812801264719.
  • M. Nikpassand, L. Zare Fekri, and S. Sanagou, “Green Synthesis of 2-Hydrazonyl-4-Phenylthiazoles Using KIT-6 Mesoporous Silica Coated Magnetite Nanoparticles,” Dyes and Pigments 136 (2017): 140–4. doi:10.1016/j.dyepig.2016.08.044.
  • L. Zare, and M. Nikpassand, “Multicomponent Synthesis of Dihydropyridines Catalyzed by L-Proline,” Chinese Chemical Letters 22, no. 5 (2011): 531–4. doi:10.1016/j.cclet.2010.12.012.
  • J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, and D. Zhao, “Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups,” Angewandte Chemie (International ed. in English) 48, no. 32 (2009): 5875–9. doi:10.1002/anie.200901566.
  • R. Nemati, D. Elhamifar, A. Zarnegaryan, and M. Shaker, “Core-Shell Structured Magnetite Silica-Supported Hexatungstate: A Novel and Powerful Nanocatalyst for the Synthesis of Biologically Active Pyrazole Derivatives,” Applied Organometallic Chemistry 35, no. 11 (2021): e6409. doi:10.1002/aoc.6409.
  • T. Akbarpour, J. Yousefi Seyf, A. Khazaei, and N. Sarmasti, “Synthesis of Pyrano [2, 3-c] Pyrazole Derivatives Using a Novel Ionic-Liquid Based Nano-Magnetic Catalyst (Fe3O4@ SiO2@(CH2) 3NH@ CC@ Imidazole@ SO3H + Cl-),” Polycyclic Aromatic Compounds (2021): 1–21. doi:10.1080/10406638.2021.1873152.
  • M. Mehrabi, A. Farhadi, and A. Kiassat, “Synthesis of Some Hexahydroquinazolinones Using K3AlF6 (Al2O3/KF) as an Efficient Catalyst in Some Hexahydroquinazolinone Derivatives,” International Journal of Organic Chemistry 07, no. 03 (2017): 240–53. doi:10.4236/ijoc.2017.73018.
  • A. R. Moosavi-Zare, M. A. Zolfigol, M. Zarei, A. Zare, and J. Afsar, “Design, Characterization and Application of Silica-Bonded Imidazolium-Sulfonic Acid Chloride as a Novel, Active and Efficient Nanostructured Catalyst in the Synthesis of Hexahydroquinolines,” Applied Catalysis A: General 505 (2015): 224–34. doi:10.1016/j.apcata.2015.08.004.
  • M. Zabihzadeh, F. Shirini, H. Tajik, and N. Daneshvar, “[H-Pyrr][HSO4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Xanthenes, Tetraketones, and Triazolo [2, 1-b] Quinazolinones,” Polycyclic Aromatic Compounds 41, no. 9 (2021): 1972–87. doi:10.1080/10406638.2019.1708419.
  • A. Khazaei, A. R. Moosavi-Zare, H. Goudarzi, and M. Tavasoli, “Preparation and Catalytic Application of 3-Methyl-1-Sulfonic Acid Imidazolium Copper (II) Trichloride for the Synthesis of 1-(α-Aminoalkyl)-2-Naphthols,” Polycyclic Aromatic Compounds (2021): 1–15. doi:10.1080/10406638.2021.2015406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.