196
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Salen: Insight into the Crystal Structure, Hirshfeld Surface Analysis, Optical Properties, DFT, and Molecular Docking Studies

, , &
Pages 5116-5138 | Received 13 Apr 2022, Accepted 24 Jun 2022, Published online: 22 Jul 2022

References

  • S. Yamada, “Advancement in Stereochemical Aspects of Schiff Base Metal Complexes,” Coordination Chemistry Reviews 190–192 (1999): 537–55. doi:10.1016/S0010-8545(99)00099-5.
  • P. G. Cozzi, “Metal–Salen Schiff Base Complexes in Catalysis: Practical Aspects,” Chemical Society Reviews 33, no. 7 (2004): 410–21. doi:10.1039/b307853c.
  • C. Baleizão, and H. Garcia, “Chiral Salen Complexes: An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts,” Chemical Reviews 106, no. 9 (2006): 3987–4043. doi:10.1021/cr050973n.
  • A. Decortes, A. M. Castilla, and A. W. Kleij, “Salen-Complex-Mediated Formation of Cyclic Carbonates by Cycloaddition of CO2 to Epoxides,” Angewandte Chemie 49, no. 51 (2010): 9822–37. doi:10.1002/anie.201002087.
  • S. Shaw, and J. D. White, “Asymmetric Catalysis Using Chiral Salen–Metal Complexes: Recent Advances,” Chemical Reviews 119, no. 16 (2019): 9381–426. doi:10.1021/acs.chemrev.9b00074.
  • W. Zhang, J. L. Loebach, S. R. Wilson, and E. N. Jacobsen, “Enantioselective Epoxidation of Unfunctionalized Olefins Catalyzed by Salen Manganese Complexes,” Journal of the American Chemical Society 112, no. 7 (1990): 2801–3. doi:10.1021/ja00163a052.
  • E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, and L. Deng, “Highly Enantioselective Epoxidation Catalysts Derived from 1,2-Diaminocyclohexane,” Journal of the American Chemical Society 113, no. 18 (1991): 7063–4. doi:10.1021/ja00018a068.
  • W. Dabelstein, A. Reglitzky, A. Schütze, and K. Reders, Ullmann’s Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2016).
  • E. Hadjoudis, M. Vitterakis, I. Moustakali, and I. Mavridis, “Photochromism and Thermochromism of Schiff Bases in the Solid State and in Rigid Glasses,” Tetrahedron 43, no. 7 (1987): 1345–60. doi:10.1016/S0040-4020(01)90255-8.
  • E. Hadjoudis, and I. M. Mavridis, “Photochromism and Thermochromism of Schiff Bases in the Solid State: Structural Aspects,” Chemical Society Reviews 33, no. 9 (2004): 579–88. doi:10.1039/b303644h.
  • K. Amimoto, and T. Kawato, “Photochromism of Organic Compounds in the Crystal State,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6, no. 4 (2005): 207–26. doi:10.1016/j.jphotochemrev.2005.12.002.
  • T. Haneda, M. Kawano, T. Kojima, and M. Fujita, “Thermo-to-Photo-Switching of the Chromic Behavior of Salicylideneanilines by Inclusion in a Porous Coordination Network,” Angewandte Chemie (International Ed. in English) 46, no. 35 (2007): 6643–5. doi:10.1002/anie.200700999.
  • A. Filarowski, A. Koll, and L. Sobczyk, “Intramolecular Hydrogen Bonding in o-Hydroxy Aryl Schiff Bases,” Current Organic Chemistry 13, no. 2 (2009): 172–93. doi:10.2174/138527209787193765.
  • V. Bertolasi, P. Gilli, and G. Gilli, “Crystal Chemistry and Prototropic Tautomerism in 2-(1-Iminoalkyl)-Phenols (or Naphthols) and 2-Diazenyl-Phenols (or Naphthols),” Current Organic Chemistry 13, no. 3 (2009): 250–68. doi:10.2174/138527209787314841.
  • E. Hadjoudis, S. D. Chatziefthimiou, and I. M. Mavridis, “Anils: Photochromism by H-Transfer,” Current Organic Chemistry 13, no. 3 (2009): 269–86. doi:10.2174/138527209787314797.
  • V. I. Minkin, A. V. Tsukanov, A. D. Dubonosov, and V. A. Bren, “Tautomeric Schiff Bases: Iono-, Solvato-, Thermo- and Photochromism,” Journal of Molecular Structure 998, no. 1–3 (2011): 179–91. doi:10.1016/j.molstruc.2011.05.029.
  • Y. Inokuma, M. Kawano, and M. Fujita, “Crystalline Molecular Flasks,” Nature Chemistry 3, no. 5 (2011): 349–58. doi:10.1038/nchem.1031.
  • K. T. Mahmudov, and A. J. L. Pombeiro, “Resonance‐Assisted Hydrogen Bonding as a Driving Force in Synthesis and a Synthon in the Design of Materials,” Chemistry (Weinheim an Der Bergstrasse, Germany) 22, no. 46 (2016): 16356–98. doi:10.1002/chem.201601766.
  • D. A. Safin, K. Robeyns, and Y. Garcia, “Crown Ether-Containing N-Salicylidene Aniline Derivatives: Synthesis, Characterization and Optical Properties,” CrystEngComm 14, no. 17 (2012): 5523–9. doi:10.1039/c2ce25600b.
  • D. A. Safin, K. Robeyns, and Y. Garcia, “Solid-State Thermo- and Photochromism in N,N′-Bis(5-X-Salicylidene)Diamines (X = H, Br),” RSC Advances 2, no. 30 (2012): 11379–88. doi:10.1039/c2ra21631k.
  • D. A. Safin, and Y. Garcia, “First Evidence of Thermo- and Two-Step Photochromism of Tris-Anils,” RSC Advances 3, no. 18 (2013): 6466–71. doi:10.1039/c3ra40705e.
  • D. A. Safin, M. Bolte, and Y. Garcia, “Photoreversible Solid State Negative Photochromism of N-(3,5-Dichlorosalicylidene)-1-Aminopyrene,” CrystEngComm 16, no. 25 (2014): 5524–6. doi:10.1039/c4ce00589a.
  • D. A. Safin, M. G. Babashkina, K. Robeyns, M. Bolte, and Y. Garcia, “N-Salicylidene Aniline Derivatives Based on the N′-Thiophosphorylated Thiourea Scaffold,” CrystEngComm 16, no. 30 (2014): 7053–61. doi:10.1039/C4CE00598H.
  • D. A. Safin, M. Bolte, and Y. Garcia, “Solid-State Photochromism and Thermochromism of N-Salicylidene Pyrene Derivatives,” CrystEngComm 16, no. 37 (2014): 8786–93. doi:10.1039/C4CE01325E.
  • D. A. Safin, M. G. Babashkina, K. Robeyns, and Y. Garcia, “C–H···Br–C vs. C–Br···Br–C vs. C–Br···N Bonding in Molecular Self-Assembly of Pyridine-Containing Dyes,” RSC Advances 6, no. 59 (2016): 53669–78. doi:10.1039/C6RA10094E.
  • D. A. Safin, K. Robeyns, M. G. Babashkina, Y. Filinchuk, A. Rotaru, C. Jureschi, M. P. Mitoraj, J. Hooper, M. Brela, and Y. Garcia, “Polymorphism Driven Optical Properties of an Anil Dye,” CrystEngComm 18, no. 38 (2016): 7249–59. doi:10.1039/C6CE00266H.
  • D. A. Safin, K. Robeyns, and Y. Garcia, “1,2,4-Triazole-Based Molecular Switches: Crystal Structures, Hirshfeld Surface Analysis and Optical Properties,” CrystEngComm 18, no. 38 (2016): 7284–96. doi:10.1039/C6CE00749J.
  • A. A. Shiryaev, T. M. Burkhanova, G. Mahmoudi, M. G. Babashkina, and D. A. Safin, “Photophysical Properties of Ethyl N-(5-Bromosalicylidene)Glycinate and Ethyl N-(5-Nitrosalicylidene)Glycinate in CH2Cl2,” Journal of Luminescense 226 (2020): 117454. doi:10.1016/j.jlumin.2020.117454.
  • D. S. Shapenova, A. A. Shiryaev, M. Bolte, M. Kukułka, D. W. Szczepanik, J. Hooper, M. G. Babashkina, G. Mahmoudi, M. P. Mitoraj, and D. A. Safin, “Resonance Assisted Hydrogen Bonding Phenomenon Unveiled from Both Experiment and Theory – an Example of New Family of Ethyl N‐Salicylideneglycinate Dyes,” Chemistry (Weinheim an Der Bergstrasse, Germany) 26, no. 57 (2020): 12987–95. doi:10.1002/chem.202001551.
  • A. A. Shiryaev, A. N. Goncharenko, T. M. Burkhanova, L. E. Alkhimova, M. G. Babashkina, R. Chandrasekaran, and D. A. Safin, “A Chiral (1R,2R)-N,N′-Bis-(Salicylidene)-1,2-Diphenyl-1,2-Ethanediamine Schiff Base Dye: Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Computational Study, Photophysical Properties and in Silico Antifungal Activity,” Journal of the Iranian Chemical Society 18 (2021): 2897–911. doi:10.1007/s13738-021-02237-5.
  • R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6.0 (Shawnee, Kansas: Semichem Inc., Shawnee Mission, 2016).
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian 09, Revision D.01, 2013.
  • R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, “Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” Journal of Chemical Physics 72, no. 1 (1980): 650–4. doi:10.1063/1.438955.
  • M. J. Frisch, J. A. Pople, and J. S. Binkley, “Self‐Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets,” Journal of Chemical Physics 80, no. 7 (1984): 3265–9. doi:10.1063/1.447079.
  • A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–52. doi:10.1063/1.464913.
  • N. Bresciani Pahor, M. Calligaris, G. Nardin, and L. Randaccio, “N,N'-Ethylenebis(Salicylideneimine),” Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 34, no. 4 (1978): 1360–3. doi:10.1107/S0567740878005592.
  • O. Trott, and A. J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61. doi:10.1002/jcc.21334.
  • Protein Data Bank. https://www.rcsb.org/ (accessed July 23, 2021).
  • BIOVIA, Dassault Systèmes, BIOVIA Discovery Studio, 2020 (San Diego, CA: Dassault Systèmes, 2020).
  • G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “Autodock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91. doi:10.1002/jcc.21256.
  • C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, “The Cambridge Structural Database,” Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials 72, no. Pt 2 (2016): 171–9. B doi:10.1107/S2052520616003954.
  • T. M. Krygowski, K. Woźniak, R. Anulewicz, D. Pawlak, W. Kolodziejski, E. Grech, and A. Szady, “Through-Resonance Assisted Ionic Hydrogen Bonding in 5-Nitro-N-Salicylideneethylamine,” The Journal of Physical Chemistry A 101, no. 49 (1997): 9399–404. doi:10.1021/jp970814a.
  • P. M. Dominiak, E. Grech, G. Barr, S. Teat, P. Mallinson, and K. Woźniak, “Neutral and Ionic Hydrogen Bonding in Schiff Bases,” Chemistry (Weinheim an Der Bergstrasse, Germany) 9, no. 4 (2003): 963–70. doi:10.1002/chem.200390118.
  • G. M. Mercier, K. Robeyns, and T. Leyssens, “Altering the Photochromic Properties of N-Salicylideneanilines Using a Co-Crystal Engineering Approach,” Crystal Growth and Design 16, no. 6 (2016): 3198–205. doi:10.1021/acs.cgd.6b00108.
  • R. F. Martínez, E. Matamoros, P. Cintas, and J. C. Palacios, “Imine or Enamine? Insights and Predictive Guidelines from the Electronic Effect of Substituents in H-Bonded Salicylimines,” The Journal of Organic Chemistry 85, no. 9 (2020): 5838–62. doi:10.1021/acs.joc.0c00130.
  • C. P. Frizzo, and M. A. P. Martins, “Aromaticity in Heterocycles: New HOMA Index Parametrization,” Structural Chemistry 23, no. 2 (2012): 375–80. doi:10.1007/s11224-011-9883-z.
  • L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, “Interrelation between H-Bond and Pi-Electron Delocalization,” Chemical Reviews 105, no. 10 (2005): 3513–60. doi:10.1021/cr030083c.
  • M. A. Spackman, and J. J. McKinnon, “Fingerprinting Intermolecular Interactions in Molecular Crystals,” CrystEngComm 4, no. 66 (2002): 378–92. doi:10.1039/B203191B.
  • M. A. Spackman, and D. Jayatilaka, “Hirshfeld Surface Analysis,” CrystEngComm 11, no. 1 (2009): 19–32. doi:10.1039/B818330A.
  • C. Jelsch, K. Ejsmont, and L. Huder, “The Enrichment Ratio of Atomic Contacts in Crystals, an Indicator Derived from the Hirshfeld Surface Analysis,” IUCrJ 1, no. Pt 2 (2014): 119–28. doi:10.1107/S2052252514003327.
  • M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, CrystalExplorer 17; University of Western Australia: Perth, Australia (2017).
  • C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, “CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems,” IUCrJ 4, no. Pt 5 (2017): 575–87. doi:10.1107/S205225251700848X.
  • S. H. Alarcón, A. C. Olivieri, D. Sanz, R. M. Claramunt, and J. Elguero, “Substituent and Solvent Effects on the Proton Transfer Equilibrium in Anils and Azo Derivatives of Naphthol. Multinuclear NMR Study and Theoretical Calculations,” Journal of Molecular Structure 705, no. 1–3 (2004): 1–9. doi:10.1016/S0022-2860(03)00208-4.
  • P. I. Nagy, and W. M. F. Fabian, “Theoretical Study of the Enol Imine ↔ Enaminone Tautomeric Equilibrium in Organic Solvents,” The Journal of Physical Chemistry B 110, no. 49 (2006): 25026–32. doi:10.1021/jp064639m.
  • P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual Density Functional Theory,” Chemical Reviews 103, no. 5 (2003): 1793–873. doi:10.1021/cr990029p.
  • I. B. Obot, D. D. Macdonald, and Z. M. Gasem, “Density Functional Theory (DFT) as a Powerful Tool for Designing New Organic Corrosion Inhibitors. Part 1: An Overview,” Corrosion Science 99 (2015): 1–30. doi:10.1016/j.corsci.2015.01.037.
  • M. Goyal, S. Kumar, I. Bahadur, C. Verma, and E. E. Ebenso, “Organic Corrosion Inhibitors for Industrial Cleaning of Ferrous and Nonferrous Metals in Acidic Solutions: A Review,” Journal of Molecular Liquids 256 (2018): 565–73. doi:10.1016/j.molliq.2018.02.045.
  • T. J. Harvey, F. C. Walsh, and A. H. Nahlé, “A Review of Inhibitors for the Corrosion of Transition Metals in Aqueous Acids,” Journal of Molecular Liquids 266 (2018): 160–75. doi:10.1016/j.molliq.2018.06.014.
  • A. A. Abdulridha, M. A. Albo Hay Allah, S. Q. Makki, Y. Sert, H. E. Salman, and A. A. Balakit, “Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690. doi:10.1016/j.molliq.2020.113690.
  • D. S. Chauhan, C. Verma, and M. A. Quraishi, “Molecular Structural Aspects of Organic Corrosion Inhibitors: Experimental and Computational Insights,” Journal of Molecular Structure 1227 (2021): 129374. doi:10.1016/j.molstruc.2020.129374.
  • A. Kokalj, “Molecular Modeling of Organic Corrosion Inhibitors: Calculations, Pitfalls, and Conceptualization of Molecule-Surface Bonding,” Corrosion Science 193 (2021): 109650. doi:10.1016/j.corsci.2021.109650.
  • I. Gotman, “Characteristics of Metals Used in Implants,” Journal of Endourology 11, no. 6 (1997): 383–9. doi:10.1089/end.1997.11.383.
  • G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, “Biomedical Implants: Corrosion and Its Prevention - A Review, Recent Pat,” Recent Patents on Corrosion Science 2, no. 1 (2010): 40–54. doi:10.2174/1877610801002010040.
  • D. Aggarwal, V. Kumar, and S. Sharma, “Drug-Loaded Biomaterials for Orthopedic Applications: A Review,” Journal of Controlled Release: Official Journal of the Controlled Release Society 344 (2022): 113–33. doi:10.1016/j.jconrel.2022.02.029.
  • H. B. Michaelson, “The Work Function of the Elements and Its Periodicity,” Journal of Applied Physics 48, no. 11 (1977): 4729–33. doi:10.1063/1.323539.
  • H. F. O. Ogutu, W. Saban, R. Malgas-Enus, and R. C. Luckay, “Synthesis and Characterization of 5- and 7-Donor Schiff Base Ligands and Spectroscopic Evidence for Tautomerism: A Crystal Structure Showing Tautomeric Forms within One Ligand,” Journal of Molecular Structure 1185 (2019): 392–402. doi:10.1016/j.molstruc.2019.02.054.
  • R. Ahmed-Belkacem, M. Hausdorff, A. Delpal, P. Sutto-Ortiz, A. M. G. Colmant, F. Touret, N. S. Ogando, E. J. Snijder, B. Canard, B. Coutard, et al, “Potent Inhibition of SARS-CoV-2 nsp14 N7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues,” Journal of Medicinal Chemistry 65, no. 8 (2022): 6231–49. doi:10.1021/acs.jmedchem.2c00120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.