242
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of N-Methylene Linker Containing Phthalimide Bearing-1H-1,2,3-Triazole by Click Chemistry Approach: Anticancer Activity in Human Cells

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5354-5374 | Received 11 Mar 2022, Accepted 04 Jul 2022, Published online: 25 Jul 2022

References

  • S.P. Phatak, R.D. Bakale, S.T. Dhumal, L.K. Dahiwade, P.B. Choudhari, V.S. Krishna, D. Sriram, and K.P. Haval, “Synthesis, Antitubercular Evaluation and Molecular Docking Studies of Phthalimide Bearing 1,2,3-Triazoles,” Synthetic Communications 49, no. 16 (2019): 2017–28. doi:10.1080/00397911.2019.1614630.
  • H.C. Kolb, M.G. Finn, and K.B. Sharpless, “Click Chemistry: Diverse Chemical Function from a Few Good Reactions,” Angewandte Chemie International Edition 40, no. 11 (2001): 2004–21. doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
  • J. Bai, Y. Li, and G. Zhang, “Cell Cycle Regulation and Anticancer Drug Discovery,” Cancer Biology & Medicine 14, no. 4 (2017): 348–62.
  • J.A. Ayukekbong, M. Ntemgwa, and A.N. Atabe, “The Threat of Anti-Microbial Resistance in Developing Countries: Causes and Control Strategies,” Antimicrobial Resistance and Infection Control 6 (2017): 47. doi:10.1186/s13756-017-0208-x.
  • A. Sahu, P. Sahu, and R. Agrawal, “Synthesis, Pharmacological and Toxicological Screening of Penicillin–Triazole Conjugates (PNTCs),” ACS Omega 4, no. 17 (2019): 17230–5. doi:10.1021/acsomega.9b01724.
  • P.S. Auti, G. George, and A.T. Paul, “Recent Advances in the Pharmacological Diversification of Quinazoline/Quinazolinone Hybrids,” RSC Advances 10, no. 68 (2020): 41353–92. doi:10.1039/D0RA06642G.
  • L. Tietze, B. Hubertus, and S. Chandrasekhar, “Natural Product Hybrids as New Leads for Drug Discovery,” Angewandte Chemie (International ed. in English) 42, no. 34 (2003): 3996–4028. doi:10.1002/anie.200200553.
  • A. Sahu, R.K. Agrawal, and R. Pandey, “Synthesis and Systemic Toxicity Assessment of Quinine-Triazole Scaffold with Antiprotozoal Potency,” Bioorganic Chemistry 88 (2019): 102939. doi:10.1016/j.bioorg.2019.102939.
  • C. Deraedt, N. Pinaud, and D. Astruc, “Recyclable Catalytic Dendrimer Nanoreactor for Part-Per-Million Cu(I) Catalysis of Click Chemistry in Water,” Journal of the American Chemical Society 136, no. 34 (2014): 12092–8. doi:10.1021/ja5061388.
  • C. Barner-Kowollik, F.E.D. Prez, P. Espeel, C.J. Hawker, T. Junkers, H. Schlaad, and W.V. Camp, “Clicking” Polymers or Just Efficient Linking: What is the Difference,” Angewandte Chemie (International ed. in English) 50, no. 1 (2011): 60–2. doi:10.1002/anie.201003707.
  • J.E. Hein, and V.V. Fokin, “Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) and beyond: New Reactivity of Copper(i) Acetylides,” Chemical Society Reviews 39, no. 4 (2010): 1302–15. doi:10.1039/b904091a.
  • V.V. Rostovtsev, L.G. Green, V.V. Fokin, and K.B. Sharpless, “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” pf Azides and Terminal Alkynes,” Journal of the Chemical Society Chemical Communication 114, no. 14 (2002): 2708–11.
  • Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, and M.G. Finn, “Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition,” Journal of the American Chemical Society 125, no. 11 (2003): 3192–3. doi:10.1021/ja021381e.
  • A.E. Speers, G.C. Adam, and B.F. Cravatt, “Activity-Based Protein Profiling In Vivo Using a Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition,” Journal of the American Chemical Society 125, no. 16 (2003): 4686–7. doi:10.1021/ja034490h.
  • Z.L. He, H.L. Teng, and C.J. Wang, “Fulvenes as Effective Dipolarophiles in Copper(I)-Catalyzed [6 + 3] Cycloaddition of Azomethine Ylides: Asymmetric Construction of Piperidine Derivatives,” Angewandte Chemie (International ed. in English) 52, no. 10 (2013): 2934–8. doi:10.1002/anie.201208799.
  • X. Bian, Q. Wang, C. Ke, G. Zhao, and Y. Li, “A New Series of N-2-Substituted-5-(p-Toluenesulfonylamino) Phthalimide Analogues as a-Glucosidase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 23, no. 7 (2013): 2022–6. doi:10.1016/j.bmcl.2013.02.011.
  • Miguel A. González, Julie Clark, Michele Connelly, and Fatima Rivas, “Antimalarial Activity of Abietane Ferruginol Analogues Possessing a Phthalimide Group,” Bioorganic & Medicinal Chemistry Letters 24, no. 22 (2014): 5234–7. doi:10.1016/j.bmcl.2014.09.061.
  • Alexandre Légora Machado, Lídia Moreira Lima, João Xavier Araújo, Carlos Alberto M. Fraga, Vera Lúcia Gonçalves Koatz, and Eliezer J. Barreiro, “Design, Synthesis and Antiinflammatory Activity of Novel Phthalimide Derivatives, Structurally Related to Thalidomide,” Bioorganic & Medicinal Chemistry Letters 15, no. 4 (2005): 1169–72. doi:10.1016/j.bmcl.2004.12.012.
  • Phoebe F. Lamie, John N. Phillopes, Ahmed O. El-Gendy, Lucie Rarova, and Jiri Gruz, “Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as In Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents,” Molecules 20, no. 9 (2015): 16620–42. doi:10.3390/molecules200916620.
  • S. Nagarajan, S. Majumder, U. Sharma, S. Rajendran, N. Kumar, S. Chatterjee, and B. Singh, “Synthesis and Anti-Angiogenic Activity of Benzothiazole, Benzimidazole Containing Phthalimide Derivatives,” Bioorganic & Medicinal Chemistry Letters 23, no. 1 (2013): 287–90. doi:10.1016/j.bmcl.2012.10.106.
  • H. Akgun, I. Karameleko, B. Berk, I. Kurnaz, G. Sarıbıyık, S. Oktem, and T. Kocag€Oz, “Synthesis and Antimycobacterial Activity of Some Phthalimide Derivatives,” Bioorganic & Medicinal Chemistry 20, no. 13 (2012): 4149–54. doi:10.1016/j.bmc.2012.04.060.
  • A. Rani, A. Viljoen, L. Kremer, and V. Kumar, “Microwave-Assisted Highly Efficient Route to 4-Aminoquinoline-Phthalimide Conjugates: Synthesis and Anti-Tubercular Evaluation,” Chemistry Select 2, no. 33 (2017): 10782–5. doi:10.1002/slct.201702220.
  • J.L. Santos, P.R. Yamasaki, C.M. Chin, C.H. Takashi, F.R. Pavan, and C.Q. Leite, “Synthesis and in Vitro anti Mycobacterium tuberculosis Activity of a Series of Phthalimide Derivatives,” Bioorganic & Medicinal Chemistry 17, no. 11 (2009): 3795–9. doi:10.1016/j.bmc.2009.04.042.
  • N. Kushwaha, A. Tripathi, and S.K.S. Kushwaha, “Synthesis, Characterization and In Vitro Anti Mycobacterium tuberculosis Evaluation of Some Novel Phthalimide Derivatives,” Der Pharma Chemical 6 (2014): 188–96.
  • D. Ashok, P. Chiranjeevi, A.V. Kumar, M. Sarasija, V.S. Krishna, D. Sriram, and S. Balasubramanian, “1,2,3-Triazole-Fused Spirochromenes as Potential Anti-Tubercular Agents: Synthesis and Biological Evaluation,” RSC Advances 8, no. 30 (2018): 16997–7007. doi:10.1039/C8RA03197E.
  • F. Gao, H. Yang, T. Lu, Z. Chen, L. Ma, Z. Xu, P. Schaffer, and G. Lu, “Design, Synthesis and anti-Mycobacterial Activity Evaluation of Benzofuran-Isatin Hybrids,” European Journal of Medicinal Chemistry 159 (2018): 277–81. doi:10.1016/j.ejmech.2018.09.049.
  • R.J. Naik, M.V. Kulkarni, K.S.R. Pai, and P.G. Nayak, “Click Chemistry Approach for Bis-Chromenyl Triazole Hybrids and Their Antitubercular Activity,” Chemical Biology & Drug Design 80, no. 4 (2012): 516–23. doi:10.1111/j.1747-0285.2012.01441.x.
  • M.H. Shaikh, D.D. Subhedar, F.A.K. Khan, J.N. Sangshetti, L. Nawale, M. Arkile, D. Sarkar, and B.B. Shingate, “Synthesis of Novel Triazole-Incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 413–21. doi:10.1002/jhet.2598.
  • Y. Sajja, S. Vanguru, H.R. Vulupala, R. Bantu, P. Yogeswari, D. Sriram, and L. Nagarapu, “Design, Synthesis and in Vitro anti-Tuberculosis Activity of Benzo [6,7] Cyclohepta[1,2-b] Pyridine-1,2,3-Triazole Derivatives,” Bioorganic & Medicinal Chemistry Letters 27, no. 23 (2017): 5119–21. doi:10.1016/j.bmcl.2017.10.071.
  • V.V. Rostovtsev, L.G. Green, V.V. Fokin, and K.B. Sharpless, “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes,” Angewandte Chemie 114, no. 14 (2002): 2708–11. doi:10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.
  • K. Kushwaha, N.L. Kaushik, and S.C. Jain, “Design and Synthesis of Novel 2H-Chromen-2- One Derivative Bearing 1,2,3-Triazole Moiety as Lead Antimicrobials,” Bioorganic & Medicinal Chemistry Letters 24, no. 7 (2014): 1795–801. doi:10.1016/j.bmcl.2014.02.027.
  • R. Gonzalez-Olvera, A. Espinoza-Vazquez, G. Negron-Silva, M. Palomar-Pardave, M. Romero-Romo, and R. Santillan, “Multicomponent Click Synthesis of New 1,2,3-Triazole Derivatives of Pyrimidine Nucleobases: Promising Acidic Corrosion Inhibitors for Steel,” Molecules 18, no. 12 (2013): 15064–79. doi:10.3390/molecules181215064.
  • L.T. Li, L.F. Zhou, Y.J. Li, J. Huang, R.H. Liu, B. Wang, and P. Wang, “Facile Synthesis of 1,2,3-Triazole Analogs of SGLT2 Inhibitors by ‘Click Chemistry,” Bioorganic & Medicinal Chemistry Letters 22, no. 1 (2012): 642–4. doi:10.1016/j.bmcl.2011.10.062.
  • Q. Sun, Y. Yao, C. Liu, H. Li, H. Yao, X. Xue, J. Liu, Z. Tu, and S. Jiang, “Design, Synthesis, and Biological Evaluation of Novel Histone Deacetylase 1 Inhibitors through Click Chemistry,” Bioorganic & Medicinal Chemistry Letters 23, no. 11 (2013): 3295–9. doi:10.1016/j.bmcl.2013.03.102.
  • G. Wang, Z. Peng, J. Wang, J. Li, and X. Li, “Synthesis and Biological Evaluation of Novel 2,4,5-Triarylimidazole-1,2,3-Triazole Derivatives via Click Chemistry as a-Glucosidase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 26, no. 23 (2016): 5719–23. doi:10.1016/j.bmcl.2016.10.057.
  • A. Anand, M.V. Kulkarni, S.D. Joshi, and S.R. Dixit, “One-Pot Click Chemistry: A Three-Component Reaction for the Synthesis of 2-Mercaptobenzimidazole Linked Coumarinyl Triazoles as anti-Tubercular Agents,” Bioorganic & Medicinal Chemistry Letters 26, no. 19 (2016): 4709–13. doi:10.1016/j.bmcl.2016.08.045.
  • S.D. Hadiyal, N.D. Parmar, P.L. Kalavadiya, J.N. Lalpara, and H.S. Joshi, “Microwave-Assisted Three-Component Domino Synthesis of Polysubstituted 4H-Pyran Derivatives and Their Anticancer Activity,” Russian Journal of Organic Chemistry 56, no. 4 (2020): 671–8. doi:10.1134/S1070428020040168.
  • A.J. Radia, J.N. Lalpara, I.J. Modasiya, and G.G. Dubal, “Design and Synthesis of Novel 1,3,4‐Oxadiazole Based Azaspirocycles Catalyzed by NaI under Mild Condition and Evaluated Their Antidiabetic and Antibacterial Activities,” Journal of Heterocyclic Chemistry 58, no. 2 (2021): 612–21. doi:10.1002/jhet.4200.
  • Navneet P. Mori, Priti K. Parmar, Vijay M. Khedker, Gaurav Sanghavi, and Ranjan C. Khunt, “Synthesis and Characterization of Some New Alkyne Containing Thiazole Derivatives as a Docking Study,” Asian Journal of Organic & Medicinal Chemistry 6, no. 2 (2021): 92–101. doi:10.14233/ajomc.2021.AJOMC-P319.
  • P.K. Parmar, N.P. Mori, V.M. Khedkar, G. Sanghavi, and R.C. Khunt, “Synthesis, Characterization & Molecular Docking Study of Hydrazinylthiazole Derivatives as Antibacterial Agents,” Analytical Chemistry Letters 12, no. 2 (2022): 244–54. doi:10.1080/22297928.2021.1983873.
  • S.L. Holbeck, R. Camalier, J.A. Crowell, J.A. Govindharajulu, M. Hollingshead, L.W. Anderson, E. Polley, L. Rubinstein, A. Srivastava, D. Wilsker, et al., “The National Cancer Institute ALMANAC: A Comprehensive Screening Resource for the Detection of Anticancer Drug Pairs with Enhanced Therapeutic Activity,” Cancer Research 77, no. 13 (2017): 3564–76. doi:10.1158/0008-5472.CAN-17-0489.
  • Mathilde R. Desselle, Ruth Neale, Karl A. Hansford, Johannes Zuegg, Alysha G. Elliott, Matthew A. Cooper, and Mark At Blaskovich, “Institutional Profile: Community for Open Antimicrobial Drug Discovery-Crowdsourcing New Antibiotics and Antifungals,” Future Science OA 3, no. 2 (2017): FSO171. doi:10.4155/fsoa-2016-0093.
  • N. Jackson, L. Czaplewski, and L.V. Piddock, “Discovery and Development of New Antibacterial Drugs: learning from Experience,” The Journal of Antimicrobial Chemotherapy 73, no. 6 (2018): 1452–9. doi:10.1093/jac/dky019.
  • “Discovery & Development Services | DTP,” can be found under https://dtp.cancer.gov/discoverydevelopment/nci-60/handling.htm
  • M.R. Boyd and K.D. Paull, “Some Practical Considerations and Applications of the National Cancer Institute in Vitro Anticancer Drug Discovery Screen,” Drug Development Research 34, no. 2 (1995): 91–109. doi:10.1002/ddr.430340203.
  • K. Ranal, A. Arora, S. Bansal, and R. Chawla, “Synthesis, In Vitro Anticancer and Antimicrobial Evaluation of Novel Substituted Dihydropyridines,” Indian Journal of Pharmaceutical 76, no. 4 (2014): 339.
  • Ghaneya S. Hassan, Gehan H. Hegazy, Noha M. Ibrahim, and Samar H. Fahim, “New Ibuprofen Derivatives as H2S and NO Donors as Safer anti-Inflammatory Agents,” Future Medicinal Chemistry 11, no. 23 (2019): 3029–52. doi:10.4155/fmc-2018-0467.
  • B. Morak-Młodawska, K. Pluta, M. Latocha, M. Jelen, and D. KúSmierz, “Design, Synthesis, and Structural Characterization of Novel Diazaphenothiazines with 1,2,3-Triazole Substituents as Promising Antiproliferative Agents,” Molecules 24, no. 23 (2019): 4388–99. doi:10.3390/molecules24234388.
  • Artur Beberok, Dorota Wrześniok, Jakub Rok, Zuzanna Rzepka, Michalina Respondek, and Ewa Buszman, “Ciprofloxacin Triggers the Apoptosis of Human Triple-Negative Breast Cancer MDA-MB-231 Cells via the p53/Bax/Bcl-2 Signaling Pathway,” International Journal of Oncology 52, no. 5 (2018): 1727–37. doi:10.3892/ijo.2018.4310.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, et al., “A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1739–49. doi:10.1021/jm0306430.
  • T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, and J.L. Banks, “A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1750–9. doi:10.1021/jm030644s.
  • J. Akhtar, A.A. Khan, Z. Ali, R. Haider, and S.M. Yar, “Structure-Activity Relationship (SAR) Study and Design Strategies of Nitrogen-Containing Heterocyclic Moieties for Their Anticancer Activities,” European Journal of Medicinal Chemistry 125 (2017): 143–89. doi:10.1016/j.ejmech.2016.09.023.
  • B. Banerji, K. Chandrasekhar, K. Sreenath, S. Roy, S. Nag, and D. Saha, “Synthesis of Triazole-Substituted Quinazoline Hybrids for Anticancer Activity and a Lead Compound as the EGFR Blocker and ROS Inducer Agent,” ACS Omega 3, no. 11 (2018): 16134–42. doi:10.1021/acsomega.8b01960.
  • H. Zhou and Y. Wang, “Recent Researches in Triazole Compounds as Medicinal Drugs,” Current Medicinal Chemistry 19, no. 2 (2012): 239–80. doi:10.2174/092986712803414213.
  • S. Ivanov, V.F. Traven, and M.E. Minyaev, “Structural Studies of 3-Tert-Butyl-8-(Methylchalcogenyl) Pyrazolo[5,1-c] [1,2,4] Triazin-4(1H)-Ones,” Structural Chemistry 31, no. 4 (2020): 1457–70. doi:10.1007/s11224-020-01533-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.