121
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Pyrazolopyranopyrimidine and Dihydropyrano[2,3-c]Pyrazole Derivatives Using Fe3O4@THAM-Piperazine as a Superparamagnetic Nanocatalyst under Green Condition

, , &
Pages 5375-5390 | Received 14 Mar 2022, Accepted 04 Jul 2022, Published online: 31 Jul 2022

References

  • R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, and T.A. Keating, “Multiple-Component Condensation Strategies for Combinatorial Library Synthesis,” Accounts of Chemical Research 29, no. 3 (1996): 123–31. doi:10.1021/ar9502083.
  • F. Hajizadeh, B. Maleki, F. Mohammadi Zonoz, and A. Amiri, “Application of Structurally Enhanced Magnetite Cored Polyamidoamine Dendrimer for Knoevenagel Condensation,” Journal of the Iranian Chemical Society 18, no. 4 (2021): 793–804. doi:10.1007/s13738-020-02071-1.
  • P. Slobbe, E. Ruijter, and R.V.A. Orru, “Recent Applications of Multicomponent Reactions in Medicinal Chemistry,” MedChemComm 3, no. 10 (2012): 1189–218. doi:10.1039/c2md20089a.
  • B. Maleki, H. Alinezhad, H. Atharifar, R. Tayebee, and A.Vedad. Mofrad, “One-Pot Synthesis of Polyhydroquinolines Catalyzed by ZnCl2 Supported on Nano Fe3O4@SiO2,” Organic Preparations and Procedures International 51, no. 3 (2019): 301–9. doi:10.1080/00304948.2019.1600132.
  • Ardeshir Khazaei, Fatemeh Gholami, Vahid Khakyzadeh, Ahmad Reza Moosavi-Zare, and Javad Afsar, “Magnetic Core–Shell Titanium Dioxide Nanoparticles as an Efficient Catalyst for Domino Knoevenagel–Michael-Cyclocondensation Reaction of Malononitrile, Various Aldehydes and Dimedone,” RSC Advances 5, no. 19 (2015): 14305–10. doi:10.1039/C4RA16300A.
  • Y. Gu, “Multicomponent Reactions in Unconventional Solvents: state of the Art,” Green Chemistry 14, no. 8 (2012): 2091–128. doi:10.1039/c2gc35635j.
  • B. Maleki, H. Eshghi, M. Barghamadi, N. Nasiri, A. Khojastehnezhad, S. Sedigh Ashrafi, and O. Pourshiani, “Silica-Coated Magnetic NiFe2O4 Nanoparticles-Supported H3PW12O40; Synthesis, Preparation, and Application as an Efficient, Magnetic, Green Catalyst for One-Pot Synthesis of Tetrahydrobenzo[b]Pyran and Pyrano[2,3-c]Pyrazole Derivatives,” Research on Chemical Intermediates 42, no. 4 (2016): 3071–93. doi:10.1007/s11164-015-2198-8.
  • B. Maleki, H. Atharifar, O. Reiser, and R. Sabbaghzadeh, “Glutathione-Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 721–34. doi:10.1080/10406638.2019.1614639.
  • S. Sargazi Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Magnetic Fe3O4@SiO2 Core–Shell Nanoparticles Functionalized with Sulfamic Acid Polyamidoamine (PAMAM) Dendrimer for the Multicomponent Synthesis of Polyhydroquinolines and Dihydro-1H-Indeno[1,2-b] Pyridines,” Organic Preparations and Procedures International 53, no. 5 (2021): 498–508. doi:10.1080/00304948.2021.1957644.
  • F. Adibian, A.R. Pourali, B. Maleki, M. Baghayeri, and A.H. Amiri, “One‐Pot Synthesis of Dihydro-1H-Indeno[1,2-b] Pyridines and Tetrahydrobenzo[b] Pyran Derivatives Using a New and Efficient Nanocomposite Catalyst Based on N‐Butylsulfonate‐Functionalized MMWCNTs-D-NH2,” Polyhedron 175 (2020): 114179. doi:10.1016/j.poly.2019.114179.
  • Ardeshir Khazaei, Ahmad Reza Moosavi-Zare, Fatemeh Gholami, and Vahid Khakyzadeh, “Preparation of 1,2,4,5-Tetrasubstituted Imidazoles over Magnetic Core–Shell Titanium Dioxide Nanoparticles,” Applied Organometallic Chemistry 30, no. 8 (2016): 691–4. doi:10.1002/aoc.3491.
  • E. Rezaei-Seresht, M. Bakhshi-Noroozi, and B. Maleki, “Piperazine-Grafted Magnetic Reduced Graphene Oxide (Fe3O4@rGO-NH) as a Reusable Heterogeneous Catalyst for Gewald Three-Component Reaction,” Polycyclic Aromatic Compounds 41, no. 9 (2021): 1944–52. doi:10.1080/10406638.2019.1708417.
  • (a) Y. Zhang, and C. Xia, “Magnetic Hydroxyapatite-Encapsulated γ-Fe2O3 Nanoparticles Functionalized with Basic Ionic Liquids for Aqueous Knoevenagel Condensation,” Applied Catalysis A: General 366, no. 1 (2009): 141–7. doi:10.1016/j.apcata.2009.06.041. (b) L. Ma’mani, A. Heydari, and A.M. Sheykhan, “The Ritter Reaction under Incredibly Green Protocol: Nano Magnetically Silica-Supported Brønsted Acid Catalyst,” Applied Catalysis A: General 384, no. 1–2 (2010): 122–7. (c) F. Sulek, Z. Knez, and M. Habulin, “Immobilization of Cholesterol Oxidase to Finely Dispersed Silica-Coated Maghemite Nanoparticles Based Magnetic Fluid,” Applied Surface Science 256, no. 14 (2010): 4596–600.
  • A. Jordan, R. Scholz, P. Wust, H. Fahling, and R. Felix, “Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles,” Journal of Magnetism and Magnetic Materials 201, no. 1–3 (1999): 413–9. doi:10.1016/S0304-8853(99)00088-8.
  • Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, “Applications of Magnetic Nanoparticles in Biomedicine,” Journal of Physics D: Applied Physics 36, no. 13 (2003): R167–81. doi:10.1088/0022-3727/36/13/201.
  • Y. Zhu, Y. Fang, and S. Kaskel, “Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery,” The Journal of Physical Chemistry C 114, no. 39 (2010): 16382–8. doi:10.1021/jp106685q.
  • T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, and B. von Rechenberg, “Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System,” Journal of Magnetism and Magnetic Materials 293, no. 1 (2005): 483–96. doi:10.1016/j.jmmm.2005.01.064.
  • D. Wang, J. He, N. Rosenzweig, and Z. Rosenzweig, “Superparamagnetic Fe2O3 Beads − CdSe/ZnS Quantum Dots Core − Shell Nanocomposite Particles for Cell Separation,” Nano Letters 4, no. 3 (2004): 409–13. doi:10.1021/nl035010n.
  • S. Esmaili, A.R. Moosavi-Zare, and A. Khazaei, “Nano-[Fe3O4@SiO2/N-Propyl-1-(Thiophen-2-yl)Ethanimine][ZnCl2] as a Nano Magnetite Schiff Base Complex and Heterogeneous Catalyst for the Synthesis of Pyrimido,” RSC Advances 12, no. 9 (2022): 5386–94. doi:10.1039/d2ra00213b.
  • A. Khazaeia, F. Gohari-Ghalila, M. Tavasolia, M. Rezaei-Goharb, and A.R. Moosavi-Zare, “Fe3O4 Bonded Pyridinium-3-Carboxylic acid-Nsulfonic Acid Chloride as an Efficient Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Chemical Methodologies 4 (2020): 543–53.
  • Behrooz Maleki, Hadi Natheghi, Reza Tayebee, Heshmatollah Alinezhad, Amirhassan Amiri, Seyed Alireza Hossieni, and Seyed Mohammad Mahdi Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43. doi:10.1080/10406638.2018.1469519.
  • M. Bihani, P.P. Bora, G. Bez, and H. Askari, “Amberlyst A21 Catalyzed Chromatography-Free Method for Multicomponent Synthesis of Dihydropyrano[2,3-c]Pyrazoles in Ethanol,” ACS Sustainable Chemistry & Engineering 1, no. 4 (2013): 440–7. doi:10.1021/sc300173z.
  • A.B. Atar, J.T. Kim, K.T. Lim, and Y.T. Jeong, “Synthesis of 6-Amino-2,4-Dihydropyrano[2,3-c]Pyrazol-5-Carbonitriles Catalyzed by Silica-Supported Tetramethylguanidine under Solvent-Free Conditions,” Synthetic Communications 44, no. 18 (2014): 2679–91. doi:10.1080/00397911.2014.913634.
  • M.N. Nasr, and M.M. Gineinah, “Pyrido [2,3-d]Pyrimidines and Pyrimido[5′,4′:5, 6]Pyrido[2,3-d]Pyrimidines as New Antiviral Agents: Synthesis and Biological Activity,” Archiv Der Pharmazie 335, no. 6 (2002): 289–95. doi:10.1002/1521-4184(200208)335:6<289::AID-ARDP289>3.0.CO;2-Z.
  • S.C. Kuo, L.J. Huang, and H. Nakamura, “Studies on Heterocyclic Compounds. 6. Synthesis and Analgesic and Antiinflammatory Activities of 3,4-Dimethylpyrano[2,3-c]Pyrazol-6-One Derivatives,” Journal of Medicinal Chemistry 27, no. 4 (1984): 539–44. doi:10.1021/jm00370a020.
  • M.E.A. Zaki, H.A. Soliman, O.A. Hiekal, and A.E.Z. Rashad, “Pyrazolopyranopyrimidines as a Class of anti-Inflammatory Agents,” Zeitschrift Fur Naturforschung. C, Journal of Biosciences 61, no. 1–2 (2006): 1–5. doi:10.1515/znc-2006-1-201.
  • A.R. Moosavi-Zare, M.A. Zolfigol, E. Noroozizadeh, M. Tavasoli, V. Khakyzadeh, and A. Zare, “Synthesis of 6-Amino-4-(4-Methoxyphenyl)-5-Cyano-3-Methyl-1-Phenyl-1,4-Dihydropyrano[2,3-c]Pyrazoles Using Disulfonic Acid Imidazolium Chloroaluminate as a Dual and Heterogeneous Catalyst,” New Journal of Chemistry 37, no. 12 (2013): 4089–94. doi:10.1039/c3nj00629h.
  • H. Mecadon, M.R. Rohman, M. Rajbangshi, and B. Myrboh, “γ-Alumina as a Recyclable Catalyst for the Four-Component Synthesis of 6-Amino-4-Alkyl/Aryl-3-Methyl-2,4-Dihydropyrano[2,3-c]Pyrazole-5-Carbonitriles in Aqueous Medium,” Tetrahedron Letters 52, no. 19 (2011): 2523–5. doi:10.1016/j.tetlet.2011.03.036.
  • S.B. Guo, S.X. Wang, and J.T. Li, “D,L‐Proline‐Catalyzed One‐Pot Synthesis of Pyrans and Pyrano[2,3‐c]Pyrazole Derivatives by a Grinding Method under Solvent‐Free Conditions,” Synthetic Communications 37, no. 13 (2007): 2111–20. doi:10.1080/00397910701396906.
  • M.A. Zolfigol, M. Tavasoli, A.R. Moosavi-Zare, P. Moosavi, H.G. Kruger, M. Shiri, and V. Khakyzadeh, “Synthesis of Pyranopyrazoles Using Isonicotinic Acid as a Dual and Biological Organocatalyst,” RSC Advances 3, no. 48 (2013): 25681–5. doi:10.1039/c3ra45289a.
  • S. Gogoi, and C.G. Zhao, “Organocatalyzed Enantioselective Synthesis of 6-Amino-5-Cyanodihydropyrano[2,3-c]Pyrazoles,” Tetrahedron Letters 50, no. 19 (2009): 2252–5. doi:10.1016/j.tetlet.2009.02.210.
  • H.V. Chavan, S.B. Babar, R.U. Hoval, and B.P. Bandgar, “Rapid One-Pot, Four Component Synthesis of Pyranopyrazoles Using Heteropolyacid under Solvent-Free Condition,” Bulletin of the Korean Chemical Society 32, no. 11 (2011): 3963–6. doi:10.5012/bkcs.2011.32.11.3963.
  • H. Faroughi Niya, N. Hazeri, M. Fatahpour, and M.T. Maghsoodlou, “Fe3O4@THAM-Piperazine: A Novel and Highly Reusable Nanocatalyst for One-Pot Synthesis of 1,8-Dioxo-Octahydro-Xanthenes and Benzopyrans,” Research on Chemical Intermediates 46, no. 7 (2020): 3651–66. doi:10.1007/s11164-020-04166-z.
  • H. Faroughi Niya, N. Hazeri, and M. Fatahpour, “Synthesis, Characterization, and Application of CoFe2O4@Amino-2-Naphthol-4-Sulfonic Acid as a Novel and Reusable Catalyst for the Synthesis of Spirochromene Derivatives,” Applied Organometallic Chemistry 35, no. 3 (2021): e6119. doi:10.1002/aoc.6119.
  • N. Hazeri, M. Lashkari, M. Fatahpour, and M. Sheikhveisi, “DABCO-Catalyzed the Synthesis of Densely Functionalized Cyclohexanones in a Benign Manner,” Bulletin of the Korean Chemical Society 41, no. 8 (2020): 786–92. doi:10.1002/bkcs.12067.
  • H. Faroughi Niya, N. Hazeri, M.T. Maghsoodlou, and M. Fatahpour, “Synthesis, Characterization, and Application of CoFe2O4@TRIS@Sulfated Boric Acid Nanocatalyst for the Synthesis of 2-Amino-3-Cyanopyridine Derivatives,” Research on Chemical Intermediates 47, no. 4 (2021): 1315–30. doi:10.1007/s11164-020-04369-4.
  • K. Ablajan, W. Liju, A. Tuoheti, and Y. Kelimu, “An Efficient Four-Component, One-Pot Synthesis of 6-Amino-4-Aryl-3-Methyl-2,4-Dihydropyrano[2,3-C]Pyrazole-5-Carbonitriles under Phase-Transfer Catalyst,” Letters in Organic Chemistry 9, no. 9 (2012): 639–43. doi:10.2174/157017812803521135.
  • H. Faroughi Niya, N. Hazeri, and M.T. Maghsoodlou, “Synthesis and Characterization of Fe3O4@THAM-SO3H as a Highly Reusable Nanocatalyst and Its Application for the Synthesis of Dihydropyrano[2,3-c]Pyrazole Derivatives,” Applied Organometallic Chemistry 34, no. 4 (2020): e5472. doi:10.1002/aoc.5472.
  • W. Mingshu, F. Qinqin, W. Dehui, and M. Jinya, “CTACl as Catalyst for Four-Component, One-Pot Synthesis of Pyranopyrazole Derivatives in Aqueous Medium,” Synthetic Communications 43 (2013): 1721–6.
  • Xiao-Tang Li, Ai-Dong Zhao, Li-Ping Mo, and Zhan-Hui Zhang, “Meglumine Catalyzed Expeditious Four-Component Domino Protocol for Synthesis of Pyrazolopyranopyrimidines in Aqueous Medium,” RSC Adv. 4, no. 93 (2014): 51580–8. doi:10.1039/C4RA08689A.
  • M.R. Tipale, L.D. Khillare, A.R. Deshmukh, and M.R. Bhosle, “An Efficient Four Component Domino Synthesis of Pyrazolopyranopyrimidines Using Recyclable Choline Chloride:Urea Deep Eutectic Solvent,” Journal of Heterocyclic Chemistry 55, no. 3 (2018): 716–28. doi:10.1002/jhet.3095.
  • C.F. Zhou, J.J. Li, and W.K. Su, “Morpholine Triflate Promoted One-Pot, Four-Component Synthesis of Dihydropyrano[2,3-c]Pyrazoles,” Chinese Chemical Letters 27, no. 11 (2016): 1686–90. doi:10.1016/j.cclet.2016.05.010.
  • S.H.S. Azzam, and M.A. Pasha, “Simple and Efficient Protocol for the Synthesis of Novel Dihydro-1H-Pyrano[2,3-c]Pyrazol-6-Ones via a One-Pot Four-Component Reaction,” Tetrahedron Letters 53, no. 50 (2012): 6834–7. doi:10.1016/j.tetlet.2012.10.025.
  • S. Khodabakhshi, A. Rashidi, Z. Tavakoli, M. Baghernejad, and A. Yadegari, “The First Catalytic Application of Oxidized Carbon Nanotubes in a Four-Component Synthesis of Fused Heterocycles,” Monatshefte Für Chemie - Chemical Monthly 147, no. 4 (2016): 791–5. doi:10.1007/s00706-015-1532-6.
  • S. Dastkhoon, Z. Tavakoli, S. Khodabakhshi, M. Baghernejad, and M.Khaleghi. Abbasabadi, “Nanocatalytic One-Pot, Four-Component Synthesis of Some New Triheterocyclic Compounds Consisting of Pyrazole, Pyran, and Pyrimidinone Rings,” New Journal of Chemistry 39, no. 9 (2015): 7268–71. doi:10.1039/C5NJ01046B.
  • M.M. Sadjadi, M. Heravi, and M. Daraie, “Heteropolyacid Supported on Amine-Functionalized Halloysite Nano Clay as an Efficient Catalyst for the Synthesis of Pyrazolopyranopyrimidines via Four-Component Domino Reaction,” Research on Chemical Intermediates 43, no. 4 (2017): 2201–14. doi:10.1007/s11164-016-2756-8.
  • M. Kangani, N. Hazeri, M.T. Maghsoodlou, K. Khandan-Barani, M. Kheyrollahi, and F. Nezhadshahrokhabadi, “Green Procedure for the Synthesis of 1,4-Dihydropyrano[2,3-c]Pyrazoles Using Saccharose,” Journal of the Iranian Chemical Society 12, no. 1 (2015): 47–50. doi:10.1007/s13738-014-0452-4.
  • Rui-Yun Guo, Zhi-Min An, Li-Ping Mo, Shu-Tao Yang, Hong-Xia Liu, Shu-Xia Wang, and Zhan-Hui Zhang, “Meglumine Promoted One-Pot, Four-Component Synthesis of Pyranopyrazole Derivatives,” Tetrahedron 69, no. 47 (2013): 9931–8. doi:10.1016/j.tet.2013.09.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.