260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quinoline–1,3,4-Oxadiazole Conjugates: Synthesis, Anticancer Evaluation, and Molecular Modelling Studies

, , , , , & show all
Pages 6437-6457 | Received 23 Feb 2022, Accepted 16 Aug 2022, Published online: 02 Sep 2022

References

  • F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” A Cancer Journal for Clinicians 68, no. 6 (2018): 394–424.
  • https://gco.iarc.fr/tomorrow/home (accessed January 21, 2021).
  • M. Arnold, C. C. Abnet, R. E. Neale, J. Vignat, E. L. Giovannucci, K. A. McGlynn, and F. Bray, “Global Burden of 5 Major Types of Gastrointestinal Cancer,” Gastroenterology 159, no. 1 (2020): 335–49.e15.
  • V. Hoff, D. D. Ramanathan, R. K. Borad, M. J. Laheru, D. A. Smith, L. S. Wood, T. E. Korn, R. L. Desai, N. Trieu, V. Iglesias, et al, “M., Gemcitabine plus Nab-Paclitaxel is an Active Regimen in Patients with Advanced Pancreatic Cancer: A Phase I/II Trial,” Journal of Clinical Oncology 29, no. 34 (2011): 4548–54.
  • P. Ghaneh, E. Costello, and J. P. Neoptolemos, “Biology and Management of Pancreatic Cancer,” Gut 56, no. 8 (2007): 1134–52.
  • S. Mishra and P. Singh, “Hybrid Molecules: The Privileged Scaffolds for Various Pharmaceuticals,” European Journal of Medicinal Chemistry 124 (2016): 500–36.
  • N. C. Desai, J. P. Harsora, J. D. Monapara, and V. M. Khedkar, “Synthesis, Antimicrobial Capability and Molecular Docking of Heterocyclic Scaffolds Clubbed by 2-Azetidinone, Thiazole and Quinoline Derivatives,” Polycyclic Aromatic Compounds (2021): 1–15.
  • X. Hu, and Z. Zhang, “Understanding the Genetic Mechanisms of Cancer Drug Resistance Using Genomic Approaches,” Trends in Genetics 32, no. 2 (2016): 127–37.
  • T. Bogenrieder, and M. Herlyn, “Axis of Evil: molecular Mechanisms of Cancer Metastasis,” Oncogene 22, no. 42 (2003): 6524–36.
  • S. W. Cowan-Jacob, “Structural Biology of Protein Tyrosine Kinases,” Cellular and Molecular Life Sciences 63, no. 22 (2006): 2608–25.
  • C. B. Westphalen, M. Quante, and T. C. Wang, “Functional Implication of Dclk1 and Dclk1-Expressing Cells in Cancer,” Small GTPases 8, no. 3 (2017): 164–71.
  • J. Panneerselvam, P. Mohandoss, R. Patel, H. Gillan, M. Li, K. Kumar, D. Nguyen, N. Weygant, D. Qu, K. Pitts, et al, “DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-Small Cell Lung Cancer via ABCD-Member-4,” Molecular Therapy Oncolytics 18 (2020): 24–36.
  • Y.-H. Liu, J. Y. S. Tsang, Y.-B. Ni, T. Hlaing, S.-K. Chan, K.-F. Chan, C.-W. Ko, S. S. Mujtaba, and G. M. Tse, “Doublecortin-like Kinase 1 Expression Associates with Breast Cancer with Neuroendocrine Differentiation,” Oncotarget 7, no. 2 (2016): 1464–76.
  • A. A. El-Arabey, M. Abdalla, and A. R. Abd-Allah, “GATA3 and Stemness of High-Grade Serous Ovarian Carcinoma: novel Hope for the Deadliest Type of Ovarian Cancer,” Human Cell 33, no. 3 (2020): 904–6.
  • X. Wu, D. Qu, N. Weygant, J. Peng, and C. W. Houchen, “Cancer Stem Cell Marker DCLK1 Correlates with Tumorigenic Immune Infiltrates in the Colon and Gastric Adenocarcinoma Microenvironments,” Cancers 12, no. 2 (2020): 274.
  • P. Chandrakesan, J. Yao, D. Qu, R. May, N. Weygant, Y. Ge, N. Ali, S. M. Sureban, M. Gude, K. Vega, et al, “Dclk1, a Tumor Stem Cell Marker, Regulates Pro-Survival Signaling and Self-Renewal of Intestinal Tumor Cells,” Molecular Cancer 16, no. 1 (2017): 30.
  • D. Qu, N. Weygant, J. Yao, P. Chandrakesan, W. L. Berry, R. May, K. Pitts, S. Husain, S. Lightfoot, M. Li, et al, “Overexpression of DCLK1-AL Increases Tumor Cell Invasion, Drug Resistance, and KRAS Activation and Can Be Targeted to Inhibit Tumorigenesis in Pancreatic Cancer,” Journal of Oncology 2019 (2019): 6402925–11.
  • N. Weygant, D. Qu, W. L. Berry, R. May, P. Chandrakesan, D. B. Owen, S. M. Sureban, N. Ali, R. Janknecht, and C. W. Houchen, “Small Molecule Kinase Inhibitor LRRK2-IN-1 Demonstrates Potent Activity against Colorectal and Pancreatic Cancer through Inhibition of Doublecortin-like Kinase 1,” Molecular Cancer 13, no. 1 (2014): 103.
  • F. M. Ferguson, Y. Liu, W. Harshbarger, L. Huang, J. Wang, X. Deng, S. J. Capuzzi, E. N. Muratov, A. Tropsha, S. Muthuswamy, et al, “Synthesis and Structure–Activity Relationships of DCLK1 Kinase Inhibitors Based on a 5,11-Dihydro-6H-Benzo[e]Pyrimido[5,4-b][1,4]Diazepin-6-One Scaffold,” Journal of Medicinal Chemistry 63, no. 14 (2020): 7817–26.
  • F. M. Ferguson, B. Nabet, S. Raghavan, Y. Liu, A. L. Leggett, M. Kuljanin, R. L. Kalekar, A. Yang, S. He, J. Wang, et al, “Discovery of a Selective Inhibitor of Doublecortin like Kinase 1,” Nature Chemical Biology 16, no. 6 (2020): 635–43.
  • R. Musiol, “An Overview of Quinoline as a Privileged Scaffold in Cancer Drug Discovery,” Expert Opinion on Drug Discovery 12, no. 6 (2017): 583–97.
  • O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, and S. Bawa, “A Review on Anticancer Potential of Bioactive Heterocycle Quinoline,” European Journal of Medicinal Chemistry 97 (2015): 871–910.
  • Y. Zhou, X. Xu, F. Wang, H. He, G. Gong, L. Xiong, and B. Qi, “Identification of Novel Quinoline Analogues Bearing Thiazolidinones as Potent Kinase Inhibitors for the Treatment of Colorectal Cancer,” European Journal of Medicinal Chemistry 204 (2020): 112643.
  • Y. Zhou, X. Xu, F. Wang, H. He, and B. Qi, “Discovery of 4-((4-(4-(3-(2-(2,6-Difluorophenyl)-4-Oxothiazolidin-3-yl)Ureido)-2-Fluorophenoxy)-6-Methoxyquinolin-7-yl)Oxy)-N,N-Diethylpiperidine-1-Carboxamide as Kinase Inhibitor for the Treatment of Colorectal Cancer,” Bioorganic Chemistry 106 (2021): 104511.
  • R. Gupta, V. Luxami, and K. Paul, “Insights of 8-Hydroxyquinolines: A Novel Target in Medicinal Chemistry,” Bioorganic Chemistry 108 (2021): 104633.
  • Y. N. Song, H. Xu, W. Chen, P. Zhan, and X. Liu, “8-Hydroxyquinoline: A Privileged Structure with a Broad-Ranging Pharmacological Potential,” MedChemComm 6, no. 1 (2015): 61–74.
  • V. Oliveri, and G. Vecchio, “8-Hydroxyquinolines in Medicinal Chemistry: A Structural Perspective,” European Journal of Medicinal Chemistry 120 (2016): 252–74.
  • M. Krawczyk, G. Pastuch-Gawolek, A. Mrozek-Wilczkiewicz, M. Kuczak, M. Skonieczna, and R. J. B. Musiol, “c., Synthesis of 8-Hydroxyquinoline Glyoconjugates and Preliminary Assay of Their β1, 4-GalT Inhibitory and anti-Cancer Properties,” Bioorganic Chemistry 84 (2019): 326–38.
  • R. C. Dash, J. Wen, A. M. Zaino, S. R. Morel, L. Q. Chau, R. J. Wechsler-Reya, and M. K. Hadden, “Structure-Based Virtual Screening Identifies an 8-Hydroxyquinoline as a Small Molecule GLI1 Inhibitor,” Molecular Therapy Oncolytics 20 (2021): 265–76.
  • C. Chen, X. Yang, H. Fang, and X. Hou, “Design, Synthesis and Preliminary Bioactivity Evaluations of 8-Hydroxyquinoline Derivatives as Matrix Metalloproteinase (MMP) Inhibitors,” European Journal of Medicinal Chemistry 181 (2019): 111563.
  • I. Mohammed, S. E. Hampton, L. Ashall, E. R. Hildebrandt, R. A. Kutlik, S. P. Manandhar, B. J. Floyd, H. E. Smith, J. K. Dozier, M. D. Distefano, et al, “8-Hydroxyquinoline-Based Inhibitors of the Rce1 Protease Disrupt Ras Membrane Localization in Human Cells,” Bioorganic & Medicinal Chemistry 24, no. 2 (2016): 160–78.
  • G. Rassias, S. Leonardi, D. Rigopoulou, E. Vachlioti, K. Afratis, Z. Piperigkou, C. Koutsakis, N. K. Karamanos, H. Gavras, and D. Papaioannou, “Potent Antiproliferative Activity of Bradykinin B2 Receptor Selective Agonist FR-190997 and Analogue Structures Thereof: A Paradox Resolved?,” European Journal of Medicinal Chemistry 210 (2021): 112948.
  • A. Ali, S. Mishra, S. Kamaal, A. Alarifi, M. Afzal, K. D. Saha, and M. Ahmad, “Evaluation of Catacholase Mimicking Activity and Apoptosis in Human Colorectal Carcinoma Cell Line by Activating Mitochondrial Pathway of Copper(II) Complex Coupled with 2-(Quinolin-8-Yloxy)(Methyl)Benzonitrile and 8-Hydroxyquinoline,” Bioorganic Chemistry 106 (2021): 104479.
  • S. Bajaj, V. Asati, J. Singh, and P. P. Roy, “1,3,4-Oxadiazoles: An Emerging Scaffold to Target Growth Factors, Enzymes and Kinases as Anticancer Agents,” European Journal of Medicinal Chemistry 97 (2015): 124–41.
  • G. Kapoor, R. Bhutani, D. P. Pathak, G. Chauhan, R. Kant, P. Grover, K. Nagarajan, and S. A. Siddiqui, “Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents,” Polycyclic Aromatic Compounds (2021): 1–33.
  • S. Dhawan, N. Kerru, P. Awolade, A. Singh-Pillay, S. T. Saha, M. Kaur, S. B. Jonnalagadda, and P. Singh, “Synthesis, Computational Studies and Antiproliferative Activities of Coumarin-Tagged 1, 3, 4-Oxadiazole Conjugates against MDA-MB-231 and MCF-7 Human Breast Cancer Cells,” Bioorgnic & Medicinal Chemistry 26, no. 21 (2018): 5612–23.
  • P. Awolade, N. Cele, O. Ebenezer, N. Kerru, L. Gummidi, L. Gu, G. Palma, M. Kaur, and P. Singh, “Synthesis of 1H-1,2,3-Triazole-Linked Quinoline–Isatin Molecular Hybrids as anti-Breast Cancer and anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Agents,” Anti-Cancer Agents in Medicinal Chemistry 21, no. 10 (2021): 1228–15.
  • M. K. Pandey, K. Gowda, K. Doi, A. K. Sharma, H.-G. Wang, and S. Amin, “Proteasomal Degradation of Mcl-1 by Maritoclax Induces Apoptosis and Enhances the Efficacy of ABT-737 in Melanoma Cells,” PLoS One 8, no. 11 (2013): e78570.
  • Schrödinger Release 2020-3: LigPrep, Schrödinger (LLC: New York, NY, 2020).
  • Schrödinger Release 2020-3: Epik, Schrödinger (New York, NY: LLC, 2020).
  • O. Patel, W. Dai, M. Mentzel, M. D. W. Griffin, J. Serindoux, Y. Gay, S. Fischer, S. Sterle, A. Kropp, C. J. Burns, et al, “Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1,” Structure 24, no. 9 (2016): 1550–61.
  • Schrödinger Release 2020-3: Protein Preparation Wizard; Epik, Schrödinger (New York, NY: LLC, 2016); Impact, Schrödinger (New York, NY: LLC, 2016); Prime, Schrödinger (New York, NY: LLC, 2020).
  • Schrödinger Release 2020-3: Induced Fit Docking Protocol; Glide, Schrödinger (New York, NY: LLC, 2016); Prime, Schrödinger (New York, NY: LLC, 2020).
  • Schrödinger Release 2020-3: Prime MM-GBSA, S. (New York, NY: LLC, 2020).
  • Schrödinger Release 2020-3: Desmond Molecular Dynamics System (New York, NY: D. E. S. R., 2021); Maestro-Desmond Interoperability Tools, Schrödinger (New York, NY, 2020).
  • L. Di, and E. H. Kerns, “Benefits of Property Assessment and Good Drug-Like Properties,” in Drug-Like Properties Concepts, Structure, Design, and Methods from ADME to Toxicity Optimization (Academic Press, 2016), 5–13.
  • http://www.swissadme.ch/ (accessed September 23, 2021).
  • Schrödinger Release 2020-3: QikProp, Schrödinger (New York, NY: LLC, 2020).
  • J. D. Hughes, J. Blagg, D. A. Price, S. Bailey, G. A. DeCrescenzo, R. V. Devraj, E. Ellsworth, Y. M. Fobian, M. E. Gibbs, R. W. Gilles, et al, “Physiochemical Drug Properties Associated with in Vivo Toxicological Outcomes,” Bioorganic & Medicinal Chemistry Letters 18, no. 17 (2008): 4872–5.
  • S. Savari, M. Liu, Y. Zhang, W. Sime, and A. Sjölander, “CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer,” PLoS One. 8, no. 9 (2013): e73466.
  • K. Bellamkonda, S. R. Satapathy, D. Douglas, N. Chandrashekar, B. C. Selvanesan, M. Liu, S. Savari, G. Jonsson, and A. Sjolander, “Montelukast, A CysLT1 Receptor Antagonist, Reduces Colon Cancer Stemness and Tumor Burden in a Mouse Xenograft Model of Human Colon Cancer,” Cancer Letters 437 (2018): 13–24.
  • N. Yadav, P. Kumar, A. Chhikara, and M. Chopra, “Development of 1,3,4-Oxadiazole Thione Based Novel Anticancer Agents: Design, Synthesis and in-Vitro Studies,” Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy] 95 (2017): 721–30.
  • I. Aier, P. K. Varadwaj, and U. Raj, “Structural Insights into Conformational Stability of Both Wild-Type and Mutant EZH2 Receptor,” Scientific Reports 6, no. 1 (2016): 34984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.