152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microwave Assisted, H3PW12O40 Mediated Green Synthesis, Crystal Structure, in-Vitro Anti-Inflammatory and Anti-Oxidant Investigation of Enaminoketones

, ORCID Icon, , ORCID Icon, , & show all
Pages 1-12 | Received 26 Aug 2020, Accepted 18 May 2021, Published online: 12 Sep 2022

References

  • S. W. S. Wang, and G. Y. G. Yang, “Recent Advances in Polyoxometalate-Catalyzed Reactions[J],” Chemical Reviews 115, no. 11 (2015): 4893–962.
  • J. Yang, M. J. Janik, D. Ma, A. Zheng, M. Zhang, M. Neurock, R. J. Davis, C. Ye, and F. Deng, “Location, Acid Strength, and Mobility of the Acidic Protons in Keggin 12-H3PW12O40: A Combined Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculation Study,” Journal of the American Chemical Society 127, no. 51 (2005): 18274–80.
  • I. V. Kozhevnikov, “Heterogeneous Acid Catalysis by Heteropoly Acids: Approaches to Catalyst Deactivation,” Journal of Molecular Catalysis A 305, no. 1-2 (2009): 104–11.
  • I. V. Kozhevnikov, “Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions,” Chemical Reviews 98, no. 1 (1998): 171–98.
  • I. Kozhevnikov, “Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis,” Catalysis Reviews 37, no. 2 (1995): 311–52.
  • N. Azizi, L. Torkiyan, and M. R. Saidi, “Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids,” Organic Letters 8, no. 10 (2006): 2079–82.
  • L. Lan, G. Xie, T. Wu, D. Feng, and X. Ma, “A Phosphotungstic Acid-Supported Multifunctional Organocatalyst Containing 9-Amino(9-Deoxy)Epi-Cinchonidine and Bronsted Acid and Its Application in Asymmetric Aldol Reaction,” RSC Advances 6, no. 61 (2016): 55894–902.
  • W. He, Z. Fang, Z. Yang, D. Ji, and K. Guo, “Heteropoly Acid-Catalyzed Three-Component aza-Diels–Alder Reaction in a Continuous Micro-Flow System,” RSC Advances 5, no. 72 (2015): 58798–803.
  • S. Siddiqui, M. U. Khan, and Z. N. Siddiqui, “Synthesis, Characterization, and Application of Silica-Supported Copper-Doped Phosphotungstic Acid in Claisen-Schmidt Condensation(Article)[J,” ACS Sustainable Chemistry & Engineering 5, no. 9 (2017): 7932–41.
  • E. F. Kozhevnikova, J. Quartararo, and I. V. K. L. Kozhevnikov, “Fries Rearrangement of Aryl Esters Catalysed by Heteropoly Acid,” Applied Catalysis A: General 245, no. 1 (2003): 69–78.
  • L. H. Wee, F. Bonino, C. Lamberti, S. Bordiga, and J. A. Martens, “Cr-MIL-101 Encapsulated Keggin Phosphotungstic Acid as Active Nanomaterial for Catalysing the Alcoholysis of Styrene Oxide,” Green Chem. 16, no. 3 (2014): 1351–7.
  • F. N. D. C. Gomes, F. M. T. Mendes, and M. M. V. M. Souza, “Synthesis of 5-Hydroxymethylfurfural from Fructose Catalyzed by Phosphotungstic Acid,” Catalysis Today 279, no. 2 (2017): 296–304.
  • S. R. Varma, “Kirk-Othmer Encyclopedia of Chemical Technology,” Microwave Technology-Chemical Synthesis Applications 16 (2000): 538–594.
  • C. O. Kappe, “Controlled Microwave Heating in Modern Organic Synthesis (p 6250-6284),” Angewandte Chemie International Edition 43, no. 46 (2004): 6250–84.
  • A. de la Hoz, Á. Díaz-Ortiz, and A. Moreno, “Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects,” Chemical Society Reviews 34, no. 2 (2005): 164–78.
  • D. Michael, P. Mingos, and A. G. Whittaker, “ChemInform Abstract: Microwave Dielectric Heating Effects in Chemical Synthesis,” ChemInform no. 27 (1997): 52–55.
  • J. S. Yadav, B. V. S. Reddy, A. K. Basak, and A. V. Narsaiah, “Three-Component Coupling Reactions in Ionic Liquids: An Improved Protocol for the Synthesis of 1,4-Dihydropyridines,” Green Chemistry 5, no. 1 (2003): 60–3.
  • G. W. G. Wang, and C. M. C. Miao, “Environmentally Benign One-Pot Multicomponent Approaches to the Synthesis of Novel Unsymmetrical 4-Arylacridinediones,” Green Chemistry 8, no. 12 (2006): 1080–5.
  • D. L. Boger, T. Ishizaki, R. J. Wysocki, S. A. Munk, P. A. Kitos, and O. Suntornwat, “Total Synthesis and Evaluation of (.+-.)-N-(Tert-Butoxycarbonyl)-CBI, (.+-.)-CBI-CDPI1, and (.+-.)-CBI-CDPI2: CC-1065 Functional Agents Incorporating the Equivalent 1,2,9,9a-Tetrahydrocyclopropa[1,2-c]Benz[1,2-e]Indol-4-One (CBI) Left-Hand Subunit,” Journal of the American Chemical Society 111, no. 16 (1989): 6461–3.
  • L. Mallu, D. Thirumalai, and I. V. Asharani, “One-Pot Cascade Synthesis and in Vitro Evaluation of anti-Inflammatory and Antidiabetic Activities of S-Methylphenyl Substituted Acridine-1,8-Diones[J],” Chemical Biology & Drug Design 90, no. 4 (2017): 520–6.
  • O. A. Luzina, D. N. Sokolov, M. A. Pokrovskii, A. G. Pokrovskii, O. B. Bekker, V. N. Danilenko, and N. F. Salakhutdinov, “Synthesis and Biological Activity of Usnic Acid Enamine Derivatives,” Chemistry of Natural Compounds 51, no. 4 (2015): 646–51.
  • D. Potin, F. Dumas, and J. D'Angelo, “New Chiral Auxiliaries: their Use in the Asymmetric Hydrogenation of.beta.-Acetamidocrotonates,” Journal of the American Chemical Society 112, no. 9 (1990): 3483–6.
  • M. M. Ghorab, M. S. Alsaid, H. A. Ghabour, and H.-K. Fun, “Synthesis, Crystal Structure and anti-Breast Cancer Activity of Some Enaminone Derivatives,” Asian Journal of Chemistry 26, no. 21 (2014): 7424–30.
  • K. V. Sashidhara, A. Kumar, G. Bhatia, M. M. Khan, A. K. Khanna, and J. K. Saxena, “Antidyslipidemic and Antioxidative Activities of 8-Hydroxyquinoline Derived Novel Keto-Enamine Schiffs Bases,” European Journal of Medicinal Chemistry 44, no. 4 (2009): 1813–8.
  • M. N. Aboul-Enein, A. El-Azzouny, and F. Ragab, “Synthesis and Anticonvulsant Activity of Certain N-Aralky-N-(1-SubstitutedCyclohexy) Benzenamines,” Scientia Pharmaceutica 74, no. 1 (2006): 1–19.
  • G. Negri, C. Kascheres, and A. J. Kascheres, “Recent Development in Preparation Reactivity and Biological Activity of Enaminoketones and Enaminothiones and Their Utilization to Prepare Heterocyclic Compounds[J,” Journal of Heterocyclic Chemistry 41, no. 4 (2004): 461–91.
  • F. L. C. P. Helena, and M. C. Ferraz, “Synthesis of N-Substituted Pyrrole and Tetrahydroindole Derivatives from Alkenyl &#946Dicarbonyl Compounds,” Tetrahedron, 55, no. 36 (1999): 10915–24.
  • G. Bartoli, C. Cimarelli, E. Marcantoni, G. Palmieri, and M. Petrini, “Chemo- and Diastereoselective Reduction of.beta.-Enamino Esters: A Convenient Synthesis of Both Cis- and Trans-.Gamma.-Amino Alcohols and.beta.-Amino Esters,” The Journal of Organic Chemistry 59, no. 18 (1994): 5328–35.
  • L. G. Beholz, P. Benovsky, D. L. Ward, N. S. Barta, and J. R. Stille, “Formation of Dihydropyridone- and Pyridone-Based Peptide Analogs through Aza-Annulation of b-Enamino Ester and Amide Substrates with a-Amido Acrylate Derivatives,” The Journal of Organic Chemistry 62, no. 4 (1997): 1033–42.
  • D. F. Martin, G. A. Janusonis, and B. B. Martin, “Stabilities of Bivalent Metal Complexes of Some B-Ketoimines,” Journal of the American Chemical Society 83, no. 1 (1961): 73–5.
  • P. G. Baraldi, D. Simoni, and S. Manfredini, “An Improved Preparation of Enaminones from 1,3-Diketones and Ammonium Acetate or Amine Acetates,” Synthesis 1983, no. 11 (1983): 902–3.
  • A. A. H. Saeed, “Preparation and Molecular Structure of New Cyclic.beta.-Diketone Schiff Bases,” Journal of Chemical & Engineering Data 29, no. 3 (1984): 358–61.
  • C. Brandt, A. da Silva, C. Pancote, C. Brito, and M. da Silveira, “Efficient Synthetic Method for β-Enamino Esters Using Ultrasound[J,” Synthesis 2004, no. 10 (2004): 1557–9.
  • P. W. Hickmott, and G. Sheppard, “Enamine Chemistry. Part XIV. Reaction of αβ-Unsaturated Acid Chlorides with Tertiary Enamino-Ketones and -Esters,” Journal of the Chemical Society, Perkin Transactions, no. 0 (1972): 1038–41.
  • H. T. S. Braibante, M. E. F. Braibante, G. B. Rosso, and D. A. Oriques, “Preparation of Beta-Enamino Carbonylic Compounds Using Microwave Radiation/K-10,” Journal of the Brazilian Chemical Society 14, no. 6 (2003): 994–7.
  • B. Das, K. Venkateswarlu, A. Majhi, M. R. Reddy, K. N. Reddy, Y. K. Rao, K. Ravikumar, and B. Sridhar, “Highly Efficient,Mild and Chemo- and Stereoselective Synthesis of Enaminones and Enamino Esters Using Silica Supported Perchloric Acid under Solvent-Free Conditions,” Journal of Molecular Catalysis A 246, no. 1–2 (2006): 276–81.
  • Y. G. Y. Gao, Q. Z. Q. Zhang, and J. X. J. Xu, “A Convenient and Effective Method for Synthesizing β-Amino-α,β-Unsaturated Esters and Ketones,” Synthetic Communications 34, no. 5 (2004): 909–16.
  • A. Arcadi, G. Bianchi, S. D. Giuseppe, and F. Marinelli, “Gold Catalysis in the Reactions of 1,3-Dicarbonyls with Nucleophiles,” Green Chemistry 5, no. 1 (2003): 64–7.
  • R. Misra, S. C. Roy, and M. Paira, “Ceric(IV) Ammonium Nitrate Catalyzed Synthesis of β-Enaminones,” Indian Journal of Chemical Technology 3 (2008): 966–9.
  • Z. Z. Z. Zhang, and J. H. J. Hu, “Cobalt(II) Chloride-Mediated Synthesis of Beta-Enamino Compounds under Solvent-Free Conditions,” Journal of the Brazilian Chemical Society 17, no. 7 (2006): 1447–51.
  • J. L. J. Lin, and L. Z. L. Zhang, “ZrCl4-Catalyzed Efficient Synthesis of Enaminones and Enamino Esters under Solvent-Free Conditions,” Monatshefte Für Chemie [Chemical Monthly] 138, no. 1 (2007): 77–81.
  • S. Tu, C. Li, G. Li, L. Cao, Q. Shao, D. Zhou, B. Jiang, J. Zhou, and M. Xia, “Microwave-Assisted Combinatorial Synthesis of Polysubstituent Imidazo[1,2-a]Quinoline, Pyrimido[1,2-a]Quinoline and Quinolino[1,2-a]Quinazoline Derivatives,” Journal of Combinatorial Chemistry 9, no. 6 (2007): 1144–8.
  • C. K. Z. Andrade, A. de, Fátima S. Barreto, and W. A. Silva, “Microwave Assisted Solvent-, Support- and Catalyst-Free Synthesis of Enaminones,” Arkivoc 2008, no. 12 (2008): 226–32.
  • Y. Liu, H. Wang, G. Yu, Q. Yu, B. Li, and X. Mu, “A Novel Approach for the Preparation of Nanocrystalline Cellulose by Using Phosphotungstic Acid,” Carbohydrate Polymers 110, no. 1 (2014): 415–22.
  • G. W. G. Wang, Y. S. Y. Shen, and X. W. X. H. Wu, “Phosphotungstic Acid Catalyzed Amidation of Alcohols,” European Journal of Organic Chemistry 2008, no. 25 (2008): 4367–71.
  • E. Rafiee, H. Mahdavi, S. Eavani, M. Joshaghani, and F. Shiri, “Catalytic Activity of Tungstophosphoric Acid Supported on Carriers of Diverse Acidity in the Synthesis of Enaminones,” Applied Catalysis A: General 352, no. 1–2 (2009): 202–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.