325
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Spectroscopic (FT-IR, 1H NMR, and UV-Vis) and Nonlinear Optical Properties of a Novel 3-(p-Cyanophenyl)-5-(o, m, p-Iodophenyl)-1-Phenylformazan: Experimental and DFT Studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7279-7296 | Received 24 Jan 2022, Accepted 02 Oct 2022, Published online: 20 Oct 2022

References

  • H. Tezcan, and M.L. Aksu, “Electrochemical Properties of 1-(o,m,p-Nitrophenyl)-3-(m-Nitrophenyl)-5-Phenylformazans and Their Nickel Complexes,” Turkish Journal of Chemistry. 34 (2010): 479–65.
  • B.I. Buzykin, “Formazans in the Synthesis of Heterocycles I. Synthesis of Azoles,” Chemistry of Heterocyclic Compounds. 46 (2010):379–408.
  • G. Mariappan, R. Korim, N.M. Joshi, F. Alam, R. Hazarika, D. Kumar, and T. Uriah, “Synthesis and Biological Evaluation of Formazan Derivatives,” Journal of Advanced Pharmaceutical Technology & Research 1, no. 4 (2010): 396–400.
  • J.P. Raval, P. Patel, and P.S. Patel, “In Vitro Antitubercular Activity of Novel 3-(4-Methoxyphenyl)-1-Isonicotinoyl-5-(Substituted Phenyl)-Formazans,” International Journal of PharmTech Research 1, no. 4 (2009): 1548–53.
  • A.B. Samel and R.P. Nandini, “Synthesis and Antimicrobial Activity of Some Novel Formazan Derivatives,” J. Chem. Pharm. Res 2, no. 4 (2010): 60–7.
  • A.S. Shawali and N.A. Samy, “Functionalized Formazans: A Review on Recent Progress in Their Pharmacological Activities,” Journal of Advanced Research 6, no. 3 (2015): 241–54.
  • G. Turkoglu, and S. Akkoç, “Synthesis, Optical, Electrochemical and Antiproliferative Activity Studies of Novel Formazan Derivatives,” Journal of Molecular Structure 1211 (2020): 128028.
  • H. Tezcan and E. Uzluk, “The Synthesis and Spectral Properties Determination of 1,3-Substituted Phenyl-5-Phenylformazans,” Dyes and Pigments 75, no. 3 (2007): 633–40.
  • J.A. Plumb, R. Milroy, and, S.B. Kaye, “Effects of the pH Dependence of 3-(4,5- Dimethylthiazol-2-yl)-2,5-Diphenyl-Tetrazolium Bromide-Formazan Absorption on Chemosensitivity Determined by a Novel Tetrazolium-Based Assay,” Cancer Res 49, no. 16 (1989): 4435–40.
  • H. Tezcan and N. Tokay, “Synthesis, Spectroscopy, and Quantum-Chemical Calculations on 1-Substituted Phenyl-3,5-Diphenylformazans,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 75, no. 1 (2010): 54–60.
  • H.K. Mahmoud, B.H. Asghar, M.F. Harras, and T.A. Farghaly, “Nano-Sized Formazan Analogues: Synthesis, Structure Elucidation, Antimicrobial Activity and Docking Study for COVID-19,” Bioorganic Chemistry 105 (2020): 104354.
  • M. Toy, H. Tanak, and H. Şenöz, “Identification of Structural and Spectral Properties of Synthesized 3-(p-Isopropylphenyl)-5-(o,m,p-Nitrophenyl)-1-Phenylformazans: A Combined Experimental and DFT Study,” Dyes and Pigments 113 (2015): 510–21.
  • M. Toy, H. Tanak, and H. Şenöz, “Experimental and DFT Computational Studies of Novel 3-(p-Cyanophenyl)-5-(o,m,p-Nitrophenyl)-5-Phenylformazans,” Journal of Molecular Structure 1213 (2020): 128178.
  • K. Karrouchi, S. Fettach, Ö. Tamer, D. Avci, A. Başoğlu, Y. Atalay, Z. Ayaz, S. Radi, H.A. Ghabbour, Y.N. Mabkhot, et al, “Synthesis, Crystal Structure, Spectroscopic Characterization, α-Glucosidase Inhibition and Computational Studies of (E)-5-methyl-N′-(Pyridin-2-Ylmethylene)-1H-Pyrazole-3-Carbohydrazide,” Journal of Molecular Structure 1248 (2022): 131506.
  • Y. Sert, M. Gümüş, H. Gökce, İ. Kani, and İ. Koca, “Molecular Docking, Hirshfeld Surface, Structural, Spectroscopic, Electronic, NLO and Thermodynamic Analyses on Novel Hybrid Compounds Containing Pyrazole and Coumarin Cores,” Journal of Molecular Structure 1171 (2018): 850–66.
  • H. Tezcan, N. Tokay, G. Alpaslan, and A. Erdonmez, “X-Ray Diffraction, Spectroscopic and DFT Studies of 1-(4-Bromophenyl)-3,5-Diphenylformazan,” Crystallography Reports 58, no. 7 (2013): 1107–12.
  • M. Khajehzadeh and N. Sadeghi, “Molecular Structure, X-Ray Crystallography, Spectroscopic Characterization, Solvent Effect, NLO, NBO, FMO Analysis of [Cu(Bpabza)] Complexe,” Journal of Molecular Liquids 249 (2018): 281–93.
  • M.H. Jamroz, “Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 114 (2013): 220–30.
  • R.M. Silverstein, G.C. Bassier, and T.C. Morrill, Spectrometric Identification of Organic Compounds, fourth ed. (New York: Wiley).  
  • H. Tezcan, H. Şenöz, and N. Tokay, “Experimental and Quantum Chemical Studies of the Structural and Spectral Properties of Novel Diazenyl Formazans,” Journal of Molecular Structure 1190 (2019): 171–83.
  • S.I. Gorelsky, SWizard Program Revision 4.5 (Ottawa: University of Ottawa, 2010).
  • H. Senöz, E. Yildirim, and H. Tezcan, “Synthesis and Spectral Properties of 1-Substituted Phenyl-3-(p-Methoxycarbonyl)Phenyl-5-Phenylformazans,” Asian Journal of Chemistry 25, no. 6 (2013): 2989–93.
  • Ö. Tamer, D. Avcı, and Y. Atalay, “Synthesis, Crystal Structure, Spectroscopic Characterization and Nonlinear Optical Properties of Co(II)- Picolinate Complex,” Materials Chemistry and Physics. 168 (2015): 138–46.
  • A.A. Abdulridha, M.A. Albo Hay Allah, S.Q. Makki, Y. Sert, H.E. Salman, and A.A. Balakit, “Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690.
  • A. Pekparlak, Ö. Tamer, S.D. Kanmazalp, N. Berber, M. Arslan, D. Avcı, N. Dege, E. Tarcan, and Y. Atalay, “Synthesis, Crystal Structure, Spectroscopic (FT-IR, 1H and 13C NMR) and Nonlinear Optical Properties of a Novel Potential HIV-1 Protease Inhibitor,” Chemical Physics Letters 742 (2020): 137171.
  • H. Vural, M. Kara, and Ö. İdil, “Experimental and Computational Study of the Structure and Spectroscopic Properties of 1′,3′-Dihydrospiro[Cyclohexane-1,2′-[2H]Imidazo[4,5-b]Pyridine],” Journal of Molecular Structure 1125 (2016): 662–70.
  • D. Avcı, S. Altürk, F. Sönmez, Ö. Tamer, A. Başoğlu, Y. Atalay, and B. Zengin Kurt, “Synthesis, DFT Calculations and Molecular Docking Study of Mixed Ligand Metal Complexes Containing 4,4′-Dimethyl-2,2′-Bipyridyl as α-Glucosidase Inhibitors,” Journal of Molecular Structure 1205 (2020): 127655.
  • H. Vural and M. Orbay, “Synthesis, Crystal Structure, Spectroscopic Investigations and DFT Calculations of the Copper(II) Complex of 4-(Trifluoromethyl)Pyridine-2-Carboxylic Acid,” Journal of Molecular Structure 1146 (2017): 669–76.
  • R. Zhang, B. Du, G. Sun, and Y. Sun, “Experimental and Theoretical Studies on o-, m- and p-Chlorobenzylideneaminoantipyrines,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 75, no. 3 (2010): 1115–24.
  • D.A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media,” Physical Review 126, no. 6 (1962): 1977–9.
  • C. Adant, M. Dupuis, and J.L. “Bredas, “Ab Initio Study of the Nonlinear Optical Properties of Urea: electron Correlation and Dispersion Effects,” International Journal of Quantum Chemistry 56, NO. S29 (1995): 497–507.
  • K. Sayin, D. Karakaş, N. Karakuş, T. A. Sayin, Z. Zaim, and S. E. Kariper, “Spectroscopic Investigation, FMOs and NLO Analyses of Zn(II) and Ni(II) Phenanthroline Complexes: A DFT Approach,” Polyhedron 90 (2015): 139–46.
  • H. Vural and M. Kara, “Spectroscopic, Optical, DNA, Antimicrobial and Density Functional Theory Studies of 5-Bromo-2-(Trifluoromethyl)Pyridine,” Optik 145 (2017): 479–88.
  • Ç. Arıoğlu, Ö. Tamer, D. Avcı, and Y. Atalay, “Optimized Geometry, Spectroscopic Characterization and Nonlinear Optical Properties of Carbazole Picrate: A Density Functional Theory Study,” Indian Journal of Physics 92, no. 12 (2018): 1613–21.
  • H. Tezcan and N. Ozkan, “Substituent Effects on the Spectral Properties of Some 3-Substituted Formazans,” Dyes and Pigments 56, no. 2 (2003): 159–66.
  • M.J. Frisch, Gaussian 09, Revision C.01 (Wallingford, CT: Gaussian, Inc., 2009).
  • R. Dennington, II, T. Keith, and J. Millam, GaussView, Version 5, Semichem Inc. (KS: Shawnee Mission, 2009).
  • C. Lee, W. Yang, and R. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–9.
  • K. Wolinski, J. Hinton, and P. Pulay, “Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations,” Journal of the American Chemical Society 112, no. 23 (1990): 8251–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.